• 제목/요약/키워드: Metabolic reaction

검색결과 194건 처리시간 0.028초

Duodenal-Jejunal Bypass Surgery Stimulates the Expressions of Hepatic Sirtuin1 and 3 and Hypothalamic Sirtuin1

  • Ha, Eunyoung;Kang, Jong Yeon;Park, Kyung Sik;Seo, Youn Kyoung;Ha, Tae Kyung
    • Journal of Obesity & Metabolic Syndrome
    • /
    • 제27권4호
    • /
    • pp.248-253
    • /
    • 2018
  • Background: Sirtuins mediate metabolic responses to nutrient availability and slow aging and accompanying decline in health. This study was designed to assess the expressions of sirtuin1 (SIRT1) and sirtuin3 (SIRT3) in the liver and hypothalamus after duodenal-jejunal bypass (DJB) surgery in rats. Methods: A total of 38 rats were randomly assigned to either sham group (n=8) or DJB group (n=30). DJB group was again divided into three groups according to the elapsed time after surgery (10 weeks, DJB10; 16 week, DJB16; 28 week, DJB28). The mRNA and protein expressions of SIRT1 and SIRT3 in the liver and hypothalamus were measured by reverse transcription polymerase chain reaction, Western blot, and immunohistochemistry analyses. $NAD^+/NADH$ ratio was also measured. Results: We found increased mRNA and protein expression levels of SIRT1 in the liver of DJB16 and DJB28 groups compared with those of sham group. The mRNA and protein expressions of SIRT3 in the liver of DJB group increased proportionally to the elapsed time after DJB surgery. The mRNA expression levels of SIRT1 in the hypothalamus increased in DJB16 and DJB28 groups and protein expression levels of SIRT1 in the hypothalamus increased in DJB10, DBJ16, and DJB28 groups compared with sham group. We observed that mRNA and protein levels of SIRT3 in the hypothalamus of DJB group were not changed. Conclusion: This study proves that DJB increases SIRT1 and SIRT3 expressions in the liver and SIRT1 expression in the hypothalamus. These results suggest the possibility of sirtuins being involved in bypass surgery-induced metabolic changes.

Effect of JAK-STAT pathway in regulation of fatty liver hemorrhagic syndrome in chickens

  • Zhu, Yaling;Mao, Huirong;Peng, Gang;Zeng, Qingjie;Wei, Qing;Ruan, Jiming;Huang, Jianzhen
    • Animal Bioscience
    • /
    • 제34권1호
    • /
    • pp.143-153
    • /
    • 2021
  • Objective: To explore the molecular mechanisms of fatty liver hemorrhagic syndrome (FLHS) in laying hens, an experiment was conducted to reveal the differences in histopathological observation and gene expression between FLHS group and normal group. Methods: We compared the histopathological difference using hematoxylin and eosin staining and proceeded with RNA sequencing of adipose tissue to search differentially expressed genes and enriched biological processes and pathways. Then we validated the mRNA expression levels by real-time polymerase chain reaction and quantified protein levels in the circulation by enzyme-linked immunosorbent assay. Results: We identified 100 differentially expressed transcripts corresponding to 66 genes (DEGs) were identified between FLHS-affected group and normal group. Seven DEGs were significantly enriched in the immune response process and lipid metabolic process, including phospholipase A2 group V, WAP kunitz and netrin domain containing 2, delta 4-desaturase sphingolipid 2, perilipin 3, interleukin-6 (IL-6), ciliary neurotrophic factor (CNTF), and suppressor of cytokine signaling 3 (SOCS3). And these genes could be the targets of immune response and be involved in metabolic homeostasis during the process of FLHS in laying hens. Based on functional categories of the DEGs, we further proposed a model to explain the etiology and pathogenesis of FLHS. IL-6 and SOCS3 mediate inflammatory responses and the satiety hormone of leptin, induce dysfunction of Jak-STAT signaling pathway, leading to insulin resistance and lipid metabolic disorders. Conversely, CNTF may reduce tissue destruction during inflammatory attacks and confer protection from inflammation-induced insulin resistance in FLHS chickens. Conclusion: These findings highlight the therapeutic implications of targeting the JAK-STAT pathway. Inhibition of IL6 and SOCS3 and facilitation of CNTF could serve as a favorable strategy to enhance insulin action and improve glucose homoeostasis, which are of importance for treating obesity-related disorders for chickens.

고지방식이로 유도된 대사증후군 모델 동물에서 백호가인삼탕(白虎加人參湯)의 장내미생물 및 유전자 발현 조절을 통한 대사 개선 효과 (The Effect of Baekhogainsam-tang on Metabolism through Modulation of the Gut Microbiota and Gene Expression in High-Fat Diet Induced Metabolic Syndrome Animal Model)

  • 조민진;한송이;임수경;송은지;남영도;김호준
    • 한방재활의학과학회지
    • /
    • 제33권3호
    • /
    • pp.1-15
    • /
    • 2023
  • Objectives We aimed to find out the improvement effect of Baekhogainsam-tang (Baihu Jia Renshen-tang, BIT) on metabolic syndrome and alteration of microbiota and gene expression. Methods We used male C57BI/6 mice and randomly assigned them into three groups. Normal control group was fed 10% kcal% fat diet, high-fat diet (HFD) group was fed 45% kcal% fat diet and 10% fructose water. BIT group was fed same diet as HFD group and treated by BIT for once daily, 6 days per week, total 8 weeks. We measured their body weight and food intake every week and performed oral glucose tolerance test 1 week before the end of the study. Then we collected the blood sample to measure triglyceride, total cholesterol, high-density lipoprotein cholesterol, insulin, and hemoglobin A1c. We harvested tissue of liver, muscle, fat, and large intestine for quantitative polymerase chain reaction (qPCR) and histopathological examination. Fresh fecal samples were collected from each animal to verify alterations of gut microbiota and we used RNA from liver tissue for microarray analysis. Results The body weight and fat weight of BIT group were reduced compared to HFD group. The qPCR markers usually up-regulated in metabolic syndrome were decreased in BIT group. Bacteroides were higher in BIT group than other groups. There were also differences in gene expressions between two groups such as Cyp3a11 and Scd1. Conclusions We could find out BIT can ameliorate metabolic syndrome and suggest its effect is related to gut microbiota composition and gene expression pattern.

Efficient Macrocyclization for Cyclicpeptide Using Solid-Phase Reaction

  • Kim, Joong-Hup;Hong, Il-Khee;Kim, Hyo-Jeong;Jeong, Hyeh-Jean;Choi, Moon-Jeong;Yoon, Chang-No;Jeong, Jin-Hyun
    • Archives of Pharmacal Research
    • /
    • 제25권6호
    • /
    • pp.801-806
    • /
    • 2002
  • Cyclicpeptides are important targets in peptide synthesis because of their interesting biological properties. Constraining highly flexible linear peptides by cyclization is one of the mostly widely used approaches to define the bioactive conformation of peptides. Cyclic peptides often have increased receptor affinity and metabolic stability over their linear counterparts. We carried out virtual screening experiment via docking in order to understand the interaction between HLE-Human Leukocyte Elastase and ligand peptide and to identify the sequence that can be a target in various ligand peptides. We made cyclic peptides as a target base on Metlle-Phe sequence having affinity for ligand and receptor active site docking. There are three ways to cyclize certain sequences of amino acids such as Met-lie-Phe-Gly-Ile. First is head-to-tail cyclization method, linking between N-terminal and C-terminal. Second method utilizes amino acid side chain such as thiol functional group in Cys, making a thioether bond. The last one includes an application of resin-substituted amino acids in solid phase reaction. Among the three methods, solid phase reaction showed the greatest yield. Macrocyclization of Fmoc-Met-Ile-Phe-Gly-Ile-OBn after cleavage of Fmoc protection in solution phase was carried out to give macrocyclic compound 5 in about 7% yield. In the contrast with solution phase reaction, solid phase reaction for macrocyclization of Met-Ile-Phe-Gly-Ile-Asp-Tentagel in normal concentrated condition gave macrocyclic compound 7 in more than 35% yield.

A New Strategy to Improve the Efficiency and Sustainability of Candida parapsilosis Catalyzing Deracemization of (R,S)-1-Phenyl-1,2-Ethanediol Under Non-Growing Conditions: Increase of NADPH Availability

  • Nie, Yao;Xu, Yan;Hu, Qing Sen;Xiao, Rong
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권1호
    • /
    • pp.65-71
    • /
    • 2009
  • Microbial oxidoreductive systems have been widely used in asymmetric syntheses of optically active alcohols. However, when reused in multi-batch reaction, the catalytic efficiency and sustainability of non-growing cells usually decreased because of continuous consumption of required cofactors during the reaction process. A novel method for NADPH regeneration in cells was proposed by using pentose metabolism in microorganisms. Addition of D-xylose, L-arabinose, or D-ribose to the reaction significantly improved the conversion efficiency of deracemization of racemic 1-phenyl-1,2-ethanediol to (S)-isomer by Candida parapsilosis cells already used once, which afforded the product with high optical purity over 97%e.e. in high yield over 85% under an increased substrate concentration of 15 g/l. Compared with reactions without xylose, xylose added to multi-batch reactions had no influence on the activity of the enzyme catalyzing the key step in deracemization, but performed a promoting effect on the recovery of the metabolic activity of the non-growing cells with its consumption in each batch. The detection of activities of xylose reductase and xylitol dehydrogenase from cell-free extract of C. parapsilosis made xylose metabolism feasible in cells, and the depression of the pentose phosphate pathway inhibitor to this reaction further indicated that xylose facilitated the NADPH-required deracemization through the pentose phosphate pathway in C. parapsilosis. moreover, by investigating the cofactor pool, the xylose addition in reaction batches giving more NADPH, compared with those without xylose, suggested that the higher catalytic efficiency and sustainability of C. parapsilosis non-growing cells had resulted from xylose metabolism recycling NADPH for the deracemization.

Dynamic changes of yak (Bos grunniens) gut microbiota during growth revealed by polymerase chain reaction-denaturing gradient gel electrophoresis and metagenomics

  • Nie, Yuanyang;Zhou, Zhiwei;Guan, Jiuqiang;Xia, Baixue;Luo, Xiaolin;Yang, Yang;Fu, Yu;Sun, Qun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권7호
    • /
    • pp.957-966
    • /
    • 2017
  • Objective: To understand the dynamic structure, function, and influence on nutrient metabolism in hosts, it was crucial to assess the genetic potential of gut microbial community in yaks of different ages. Methods: The denaturing gradient gel electrophoresis (DGGE) profiles and Illumina-based metagenomic sequencing on colon contents of 15 semi-domestic yaks were investigated. Unweighted pairwise grouping method with mathematical averages (UPGMA) clustering and principal component analysis (PCA) were used to analyze the DGGE fingerprint. The Illumina sequences were assembled, predicted to genes and functionally annotated, and then classified by querying protein sequences of the genes against the Kyoto encyclopedia of genes and genomes (KEGG) database. Results: Metagenomic sequencing showed that more than 85% of ribosomal RNA (rRNA) gene sequences belonged to the phylum Firmicutes and Bacteroidetes, indicating that the family Ruminococcaceae (46.5%), Rikenellaceae (11.3%), Lachnospiraceae (10.0%), and Bacteroidaceae (6.3%) were dominant gut microbes. Over 50% of non-rRNA gene sequences represented the metabolic pathways of amino acids (14.4%), proteins (12.3%), sugars (11.9%), nucleotides (6.8%), lipids (1.7%), xenobiotics (1.4%), coenzymes, and vitamins (3.6%). Gene functional classification showed that most of enzyme-coding genes were related to cellulose digestion and amino acids metabolic pathways. Conclusion: Yaks' age had a substantial effect on gut microbial composition. Comparative metagenomics of gut microbiota in 0.5-, 1.5-, and 2.5-year-old yaks revealed that the abundance of the class Clostridia, Bacteroidia, and Lentisphaeria, as well as the phylum Firmicutes, Bacteroidetes, Lentisphaerae, Tenericutes, and Cyanobacteria, varied more greatly during yaks' growth, especially in young animals (0.5 and 1.5 years old). Gut microbes, including Bacteroides, Clostridium, and Lentisphaeria, make a contribution to the energy metabolism and synthesis of amino acid, which are essential to the normal growth of yaks.

노인 건강증진용 신발의 운동과학적 효과분석 (The Scientific Analysis of Aged' Shoe for Health Promotion)

  • 진영완;곽이섭
    • 생명과학회지
    • /
    • 제21권9호
    • /
    • pp.1336-1345
    • /
    • 2011
  • 본 연구에서는 국내외 실버화와 일반적인 운동화에 대한 1차 운동기능학적 분석을 통하여 노인에게 가장 적합한 신발을 정하고 2차 운동생리학적 실험을 통해 체지방률변화, 운동강도에 따른 대사량의 변화 그리고 에너지 소비량의 변화를 분석하였다. 본 연구의 대상으로는 특별한 질병을 가지고 있지 않은 남자 어른들 20명을 대상으로 하였으며, 평균나이는 $62.78{\pm}4.32$세, 신장은 $170.89{\pm}3.56cm$ 그리고 몸무게는 $75.12{\pm}8.76kg$이었다. 실험 전 실험에 대한 충분한 설명을 하고 동의서를 받은 후 데이터를 수집하였다. 본 연구를 위하여 운동 기능학적 실험과 운동 생리학적 실험을 수행하였으며, 본 연구결과 걷기나 달리기 시 최초 발 뒤꿈치 접촉 시 발이 회내(pronation)되는 정도와 최대 회내가 되는 정도를 알아 본 결과 걷기속도가 가장 빠르게 나온 B형의 신발이 회내값($-2.3{\pm}1.05^{\circ}$)이 가장 크게 나타났으며 일반걷기용 신발에서 가장 작은 값($-1.5{\pm}0.49^{\circ}$)을 보여주고 있다. 또한 노인들의 일상생활에서 착용하는 건강증진용 신발을 대상으로 운동 생리학적 부분을 살펴보면 체지방율의 변화는 모든 그룹에서 감소는 하였으나, 통계적으로 유의한 차이가 나타나지 않았는데, 이는 체지방율의 변화를 가져오기 위해서 일시적인 운동이 아닌 규칙적이고 장기적인 운동이 필요할 것으로 사료되어지며, 노인들이 건강증진용 기능화를 장기적으로 착용하여 운동할 경우 체 지방율에 긍정적인 영향을 미칠 것으로 사료되어진다.

Metabolic engineering for isoprenoids production in Escherichia coli

  • 김선원
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.70-73
    • /
    • 2001
  • Isopentenyl diphosphate (IPP) is the common, five-carbon building block in the biosynthesis of all isoprenoids. IPP in Escherichia coli is synthesized through the non-mevalonate pathway. The first reaction of IPP biosynthesis in E. coli is the formation of 1-deoxy-D-xylulose-5-phosphate(DXP), catalyzed by DXP synthase and encoded by dxs. The second reaction in the pathway is the reduction of DXP to 2-C-methyl-D-erythritol-4-phosphate, catalyzed by DXP reductoismerase and encoded by dxr. To determine if one of more of the reactions in the non-mevalonate pathway controlled flux to IPP, dxs and dxr were placed on several expression vectors under the control of three different promoters and transformed into three E. coli strains ($DH5{\alpha}$, XL1-Blue, and JM101) that had been engineered to produce lycopene, a kind of isoprenoids. Lycopene production was improved significantly in strains transformed with the dex expression vectors. At arabinose concentrations between 0 and 1.33 mM, cells expressiong both dxs and from $P_{BAD}$ on a midium-copy plasmid produced 1.4 -2.0 times more lycopene than cells expressing dxs only. However, at higher arabinose concentrations lycopene production in cell expressing both dxs and dxr was lower than in cells expression dxs only. A comparison of the three E. coli strains trasfomed with the arabinose-inducible dxs on a medium-copy plasmid revealed that lycopene production was highest in XL1-Blue.

  • PDF

Regulation Mechanism of Redox Reaction in Rubredoxin

  • Tongpil Min;Marly K. Eidsness;Toshiko Ichiye;Kang, Chul-Hee
    • Journal of Microbiology
    • /
    • 제39권3호
    • /
    • pp.149-153
    • /
    • 2001
  • The electron transfer reaction is one of the most essential processes of life. Not only does it provide the means of transforming solar and chemical energy into a utilizable form for all living organisms, it also extends into a range of metabolic processes that support the life of a cell. Thus, it is of great interest to understand the physical basis of the rates and reduction potentials of these reactions. To identify the major determinants of reduction potentials in redox proteins, we have chosen the simplest electron transfer protein, rubredoxin, a small (52-54 residue) iron-sulfur protein family, widely distributed in bacteria and archaea. Rubredoxins can be grouped into two classes based on the correlation of their reduction potentials with the identity of residue 44; those with Ala44 (ex: Pyrococcus furiosus) have reduction potentials that are ∼50 mV higher than those with Va144 (ex: Clostridium pasteurianum). Based on the crystal structures of rubredoxins from C. pasteurianum and P. furiosus, we propose the identity of residue 44 alone determines the reduction potential by the orientation of the electric dipole moment of the peptide bond between 43 and 44. Based on 1.5 $\AA$ resolution crystal structures and molecular dynamics simulations of oxidized and reduced rubredoxins from C. pasteurianum, the structural rearrangements upon reduction suggest specific mechanisms by which electron transfer reactions of rubredoxin should be facilitated.

  • PDF

간흡충: 충체 및 대사성 항원의 특성분석 (1) 항원투여 마우스 비장조직에 대한 면역조직화학적 연구 (Clonorchis sinensis: Analysis of the Characterization of Somatic and Metabolic Antigens (1) Immunohistochemical Characteristics of the Spleen in Mice When Intraperitoneally Injected with Antigens)

  • 양용석;류장근;주난영;송강원
    • 대한의생명과학회지
    • /
    • 제2권2호
    • /
    • pp.275-282
    • /
    • 1996
  • 저자들은 마우스를 실험모델로 하여 간흡충의 항원을 투여 했을 때 비장조직에 대한 CD3, CD4 및 CD8 모노클로날 항체의 반응 여부를 알아보고자 하였다. 즉, 간흡충에 대한 세포면역학적인 특성을 규명고자 하였으며 특히 비장 조직에 대한 phenotype을 관찰한 결과 다음과 같은 결과를 얻었다. 간흡충의 조항원을 면역증강제와 함께 복강 투여한 다음 일정 기간 후에 비장조직을 Avidin-biotin complex 면역조직염색을 실시한 결과 CD3에서 강한 양성 반응을 나타냈고 CD4와 CD8에서는 약한 반응을 나타냈다. 조직부위를 보면 피막, 혈관, 임파관, 백수부위와 림프구 및 대식 세포의 세포막에서 양성반응을 보였다.

  • PDF