• Title/Summary/Keyword: Metabolic reaction

Search Result 194, Processing Time 0.02 seconds

Study of in Silico Simulation Method for Dynamic Network Model in Lactic Acid Bacteria (Lactic Acid Bacteria의 동역학 네트워크 모델을 이용한 in Silico 모사방법 연구)

  • Jung, Ui-Sub;Lee, Hye-Won;Lee, Jin-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.10
    • /
    • pp.823-829
    • /
    • 2005
  • We have newly constructed an in silico model of fermentative metabolism for Lactococcus lactis in order to analyze the characteristics of metabolite flux for dynamic network. A rigorous mathematical model for metabolic flux has been developed and simulation researches have been performed by using GEPASI program. In this simulation task, we were able to predict the whole flux distribution trend for lactate metabolism and analyze the flux ratio on the pyruvate branch point by using metabolic flux analysis(MFA). And we have studied flux control coefficients of key reaction steps in the model by using metabolic control analysis(MCA). The role of pyruvate branch seems to be essential for the secretion of lactate and other organic byproducts. Then we have made an effort to elucidate its metabolic regulation characteristics and key reaction steps, and find an optimal condition for the production of lactate.

Construction of Comprehensive Metabolic Network for Glycolysis with Regulation Mechanisms and Effectors

  • JIN, JONG-HWA;JUNG, UI-SUB;JAE, WOOK-NAM;IN, YONG-HO;LEE, SANG-YUP;LEE, DOHE-ON;LEE, JIN-WON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.161-174
    • /
    • 2005
  • Abstract Glycolysis has a main function to provide ATP and precursor metabolites for biomass production. Although glycolysis is one of the most important pathways in cellular metabolism, the details of its regulation mechanism and regulating chemicals are not well known yet. The regulation of the glycolytic pathway is very robust to allow for large fluxes at almost constant metabolite levels in spite of changing environmental conditions and many reaction effectors like inhibitors, activating compounds, cofactors, and related metal ions. These changing environmental conditions and metabolic reaction effectors were focused on to understand their roles in the metabolic networks. In this study, we have investigated for construction of the regulatory map of the glycolytic metabolic network and tried to collect all the effectors as much as possible which might affect the glycolysis metabolic pathway. Using the results of this study, it is expected that a complex metabolic situation can be more precisely analyzed and simulated by using available programs and appropriate kinetic data.

Development of an Apparatus for the Determination of In Vitro Metabolic Rate Constants of Volatile Organic Chemicals (휘발성 유기용매의 In vitro 대사속도 측정 장치의 개발)

  • Hwang, In-Young;Lee, Yoon
    • Environmental Analysis Health and Toxicology
    • /
    • v.12 no.3_4
    • /
    • pp.43-54
    • /
    • 1997
  • Species, doses and routes extrapolation can be sucessfully carried out by using a physiologically-based pharmacokinetic (PBPK) approach. And PBPK approach to assess risk of hazardous chemicals is reasonable whatever the exposure scenarios are happened. Both partitioning coefficients of chemical between tissue and blood and enzymatic metabolic rate constants are key parameters to build up the PBPK model. In this study, we tried to estimate in vitro metabolic rate constants using a special apparatus instead to measure the in vivo constants which are used to PBPK simulation since the in vitro tests are less expensive and more convenient than in vivo tests. For the purpose, we designed and tested the new system to measure continuously the headspace concentration of VOC. The newly designed system is composed with a diffusion chamber which generates gaseous substrate, a reaction vessel with a recirculating pump to establish a closed system, an autbmatic sampler from a gas phase, a gas chromatography to analyze the headspace. In addition, a cold water condenser is attached between the reaction vessel and pump to reduce the content of gaseous moisture which interferes with chemical analysis. To validate the newly developed methodology, in vitro metabolic rate constants of trichloroethylene (TCE) as a prototype VOC were estimated by simulating observed results with an ACSL program. The simulated results are consistent to those estimated by the other research groups. This finding suggests that our newly designed closed system may be a useful apparatus to estimate in vitro metabolic rate constants for VOC.

  • PDF

Cancer Activation and Polymorphisms of Human Cytochrome P450 1B1

  • Chun, Young-Jin;Kim, Donghak
    • Toxicological Research
    • /
    • v.32 no.2
    • /
    • pp.89-93
    • /
    • 2016
  • Human cytochrome P450 enzymes (P450s, CYPs) are major oxidative catalysts that metabolize various xenobiotic and endogenous compounds. Many carcinogens induce cancer only after metabolic activation and P450 enzymes play an important role in this phenomenon. P450 1B1 mediates bioactivation of many procarcinogenic chemicals and carcinogenic estrogen. It catalyzes the oxidation reaction of polycyclic aromatic carbons, heterocyclic and aromatic amines, and the 4-hydroxylation reaction of $17{\beta}$-estradiol. Enhanced expression of P450 1B1 promotes cancer cell proliferation and metastasis. There are at least 25 polymorphic variants of P450 1B1 and some of these have been reported to be associated with eye diseases. In addition, P450 1B1 polymorphisms can greatly affect the metabolic activation of many procarcinogenic compounds. It is necessary to understand the relationship between metabolic activation of such substances and P450 1B1 polymorphisms in order to develop rational strategies for the prevention of its toxic effect on human health.

Degradation of Polyvinyl Alcohol by Brevibacillus laterosporus: metabolic Pathway of Polyvinyl Alcohol to Acetate

  • Lim, Joong-Gyu;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.928-933
    • /
    • 2001
  • Approximately 0.1 mg/ml of polyvinyl alcohol (PVA) was degraded by the growing cell, Brevibacillus laterospours, for 30 h, and 0.2 mg/ml of PVA was degraded by the cell-free extract that was isolated from Brevibacillus laterosporus. Approximately $0.29{\mu}g$/ml of acetic acid was produced from PVA by using the cell-free extract as a catalyst for 40 min. $V_{max}\;and\;K_m$ value of purified PAV-degradation enzyme was 3.75g/l and 2.75 g/l/min in reaction with EDTA and 3.99 g/l and 2.98 g/l/min in reaction without EDTA, respectively. Molecular weight of the purified enzyme determined by SDS-PAGE was 63,000 Da. Alcohol dehydrogenase and aldehyde dehydrogenase activities were qualitatively detected on a native acrylamide gel by an active staining method, indicating the existence of the metabolic pathway to use PVA as a substrate.

  • PDF

Metabolic Interactions of Cannabinoids with Steroid Hormones

  • Watanabe, Kazuhito
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2007.11a
    • /
    • pp.57-64
    • /
    • 2007
  • Metabolic interactions of the three major cannabinoids, ${\Delta}^9$-tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabinol (CBN) with steroid hormones were investigated. These cannabioids concentration-dependently inhibited $3{\beta}$-hydroxysteroid dehydrogenase and $17{\alpha}$-hydroxylase in rat adrenal and testis microsomes. CBD and CBN were the most potent inhibitors of $3{\beta}$-phydroxysteroid dehydrogenase and progesterone $17{\alpha}$-hydroxylase, respectively, in rat testis microsomes. Three cannabinoids highly attenuated hCG-stimulated testosterone production in rat testicular interstitial cells. These cannabinoids also decreased in levels of mRNA and protein of StAR in the rat testis cells. These results indicate that the cannabinoids could interact with steroid hormones, and exert their modulatory effects on endocrine and testicular functions. Metabolic interaction of a THC metabolite, $7{\beta}$-hydroxy-${\Delta}^8$-THC with steroids is also investigated. Monkey liver microsomes catalyzed the stereoselective oxidation of $7{\beta}$-hydroxy-${\Delta}^8$-THC to 7-oxo-${\Delta}^8$-THC, so-called microsomal alcohol oxygenase (MALCO). The reaction is catalyzed by CYP3A8 in the monkey liver microsomes, and required NADH as well as NADPH as an efficient cofactor, and its activity is stimulated by some steroids such as testosterone and progesterone. Kinetic analyses revealed that MALCO-catalyze reaction showed positive cooperativity. In order to explain the metabolic interaction between the cannabinoid metabolite and testosterone, we propose a novel kinetic model involving at least three binding sites for mechanism of the metabolic interactions.

  • PDF

Metabolic Flux Distribution for $\gamma$-Linolenic Acid Synthetic Pathways in Spirulina platensis

  • Meechai Asawin;Pongakarakun Siriluk;Deshnium Patcharaporn;Cheevadhanarak Supapon;Bhumiratana Sakarindr
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.6
    • /
    • pp.506-513
    • /
    • 2004
  • Spirulina produces $\gamma$-linolenic acid (GLA), an important pharmaceutical substance, in a relatively low level compared with fungi and plants, prompting more research to improve its GLA yield. In this study, metabolic flux analysis was applied to determine the cellular metabolic flux distributions in the GLA synthetic pathways of two Spiru/ina strains, wild type BP and a high­GLA producing mutant Z19/2. Simplified pathways involving the GLA synthesis of S. platensis formulated comprise of photosynthesis, gluconeogenesis, the pentose phosphate pathway, the anaplerotic pathway, the tricarboxylic cycle, the GLA synthesis pathway, and the biomass syn­thesis pathway. A stoichiometric model reflecting these pathways contains 17 intermediates and 22 reactions. Three fluxes - the bicarbonate (C-source) uptake rate, the specific growth rate, and the GLA synthesis rate - were measured and the remaining fluxes were calculated using lin­ear optimization. The calculation showed that the flux through the reaction converting acetyl­CoA into malonyl-CoA in the mutant strain was nearly three times higher than that in the wild­type strain. This finding implies that this reaction is rate controlling. This suggestion was sup­ported by experiments, in which the stimulating factors for this reaction $(NADPH\;and\;MgCl_{2})$ were added into the culture medium, resulting in an increased GLA-synthesis rate in the wild type strain.

Prediction of Maximum Yields of Metabolites and Optimal Pathways for Their Production by Metabolic Flux Analysis

  • Hong, Soon-Ho;Moon, Soo-Yun;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.571-577
    • /
    • 2003
  • The intracellular metabolic fluxes can be calculated by metabolic flux analysis, which uses a stoichiometric model for the intracellulal reactions along with mass balances around the intracellular metabolites. In this study, metabolic flux analyses were carried out to estimate flux distributions for the maximum in silico yields of various metabolites in Escherichia coli. The maximum in silico yields of acetic acid and lactic acid were identical to their theoretical yields. On the other hand, the in silico yields of succinic acid and ethanol were only 83% and 6.5% of their theoretical yields, respectively. The lower in silico yield of succinic acid was found to be due to the insufficient reducing power. but this lower yield could be increased to its theoretical yield by supplying more reducing power. The maximum theoretical yield of ethanol could be achieved, when a reaction catalyzed by pyruvate decarboxylase was added in the metabolic network. Futhermore, optimal metabolic pathways for the production of various metabolites could be proposed, based on the results of metabolic flux analyses. In the case of succinic acid production, it was found that the pyruvate carboxylation pathway should be used for its optimal production in E. coli rather than the phosphoenolpyruvate carboxylation pathway.

MetaFluxNet: a program for metabolic flux analysis (MFA)

  • Yun, Hong-Soek;Lee, Dong-Yup;Lee, Sang-Yup;Park, Sunwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.57.3-57
    • /
    • 2002
  • 1. Introduction 2. General flux balance model 3. MetaFluxNet 3.1 Overview of MetaFluxNet 3.2 Project file format 3.3 Construction of metabolite reaction model 3.4 Metabolic flux analysis using linear programming 3.5 Visualization of MFA results 4. Conclusion and plan 5. Acknowledgement. References.

  • PDF