• Title/Summary/Keyword: Metabolic parameters

Search Result 342, Processing Time 0.037 seconds

Influence of Epinephrine and Norepinephrine on the Risk of Metabolic Syndrome Occurrence in Workers Exposed to Hazardous Chemicals (유해화학물질 노출 근로자의 대사증후군 발생위험에 대한 epinephrine과 norepinephrine의 영향)

  • Heo, Kyung-Hwa;Kim, Ki-Woong
    • Korean Journal of Occupational Health Nursing
    • /
    • v.19 no.1
    • /
    • pp.88-96
    • /
    • 2010
  • Purpose: The aim of the present study was to clarify effects of long term, low-level monocyclic aromatic hydrocarbons exposure (MAHs) such as styrene, toluene and xylene on physiological levels of epinephrine (EP) and norepinephrine (NEP) and these hormones influences diagnosis indices of metabolic syndrome (MetS). Methods: Blood pressure and serum biochemical parameters were measured using digital sphygmomanometer and autochemical analyzer. EP and NEP were analyzed by using ELISA kit and exposure level of MAHs was measured by NIOSH method. Results: The differences of general characteristics such as age, smoking and drinking habits in both groups were not significantly different except working hours per day. In exposed workers, exposure levels of MAHs showed very low concentrations. Serum HDL-cholesterol concentration was significantly higher in exposed group, but concentration of NEP was significantly higher in control group. On multiple logistic regression analysis for the diagnosis indices of MetS, EP was WC (OR=0.970), NEP was blood pressure (OR=1.002) and MAHs exposure were significantly associated with HDL-cholesterol (OR=0.257), fasting glucose (OR=3.028) and MetS (OR=0.372). Conclusion: These findings suggest that the chronic exposure of low level MAHs maycontribute to glucose metabolism and induction of MetS. And also, changes of EP and NEP levels by exposure of MAHs affect blood pressure.

Optimization of Scan Parameters for in vivo Hyperpolarized Carbon-13 Magnetic Resonance Spectroscopic Imaging

  • Nguyen, Nguyen Trong;Rasanjala, Onila N.M.D.;Park, Ilwoo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.2
    • /
    • pp.125-134
    • /
    • 2022
  • Purpose: The aim of this study was to investigate the change in signal sensitivity over different acquisition start times and optimize the scanning window to provide the maximal signal sensitivity of [1-13C]pyruvate and its metabolic products, lactate and alanine, using spatially localized hyperpolarized 3D 13C magnetic resonance spectroscopic imaging (MRSI). Materials and Methods: We acquired 3D 13C MRSI data from the brain (n = 3), kidney (n = 3), and liver (n = 3) of rats using a 3T clinical scanner and a custom RF coil after the injection of hyperpolarized [1-13C]pyruvate. For each organ, we obtained three consecutive 3D 13C MRSI datasets with different acquisition start times per animal from a total of three animals. The mean signal-to-noise ratios (SNRs) of pyruvate, lactate, and alanine were calculated and compared between different acquisition start times. Based on the SNRs of lactate and alanine, we identified the optimal acquisition start timing for each organ. Results: For the brain, the acquisition start time of 18 s provided the highest mean SNR of lactate. At 18 s, however, the lactate signal predominantly originated from not the brain, but the blood vessels; therefore, the acquisition start time of 22 s was recommended for 3D 13C MRSI of the rat brain. For the kidney, all three metabolites demonstrated the highest mean SNR at the acquisition start time of 32 s. Similarly, the acquisition start time of 22 s provided the highest SNRs for all three metabolites in the liver. Conclusion: In this study, the acquisition start timing was optimized in an attempt to maximize metabolic signals in hyperpolarized 3D 13C MRSI examination with [1-13C] pyruvate as a substrate. We investigated the changes in metabolic signal sensitivity in the brain, kidney, and liver of rats to establish the optimal acquisition start time for each organ. We expect the results from this study to be of help in future studies.

A Development of Methods for detecting Immunosuppression induced by Cyclophosphamide in vitro (Cyclophosphamide의 면역독성 검출을 위한 in vitro 시험법의 개발)

  • ;Michael P. Holsapple
    • Biomolecules & Therapeutics
    • /
    • v.2 no.3
    • /
    • pp.236-243
    • /
    • 1994
  • A splenocyte culture system supplemented with liver microsomes was developed to detect immunotoxic chemicals which require metabolic activation using cyclophosphamide as a positive standard. When liver microsomes were added to splenocyte cultures isolated from female B6C3Fl mice, the proliferation of splenocytes by lipopolysaccharide (LPS) was increased and the proliferation by concanavalin A (Con A) was decreased. However, when compared with each corresponding control, cyclophophamide was successfully activated to metabolites capable of suppressing Iymphoproliferative responses. This suppression was clearly dependent upon the amounts of microsomes added and/or the concentration of cyclophosphamide exposed. In these cultures, the proliferation of splenocytes was suppressed when the cells were exposed to cyclophosphamide on the day of culture initiation. On the other hand, microsome was responsible for the increase in LPS mitogenicity and NADPH was responsible for the decrease in Con A mitogenicity. Finally, our present culture system was compared with the hepatocyte-splenocyte coculture system which we had developed earlier. We found that the hepatocyte-splenocyte coculture was better able to activate cyclophosphamide to metabolites capable of suppressing the antibody response to sheep erythrocytes. Although our present culture system was relatively poor to activate cyclophosphamide in cultures for antibody response, it will be useful as a simple screening method to detect suppression of certain in vitro immunotoxic parameters like LPS mitogenicity by chemicals which require metabolism.

  • PDF

Relationship of Blood Metabolites with Reproductive Parameters during Various Seasons in Murrah Buffaloes

  • Khan, H.M.;Mohanty, T.K.;Bhakat, M.;Raina, V.S.;Gupta, A.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.9
    • /
    • pp.1192-1198
    • /
    • 2011
  • Peri-partum metabolic profile was evaluated in winter and summer calving, with 15 Murrah buffaloes in each seasonal group. In summer calvers, significantly lower values were observed for blood plasma urea nitrogen (BUN) at day 30 pre-partum (p<0.05), on calving day (p<0.05) and at all other stages (p<0.01); plasma non-esterified fatty acids (NEFA) values were significantly lower on day 30 pre-partum (p<0.01) and on day 60 post-partum (p<0.05). This was associated with significant reduction in days to first service (DFS) and service per conception (SPC) and an overall better reproductive performance in terms of service period, risk to first service on days 60, 90 and >90, and pregnancy risk to first service up to days 60 and 90. This may be attributed to better pre-partum nutritional status. Cervical and uterine involution were completed in fewer days, involutional changes took place at a faster pace and there were a lower number of abnormal involutional changes in winter compared to summer season. This may be attributed to better post-partum nutrition and less environmental stress. However, validation requires further targeted cohort investigation with a large sample size.

Significant Association of Metabolic Indices, Lipid Profile, and Androgen Levels with Prostate Cancer

  • Tewari, Reshu;Chhabra, Mohini;Natu, Shankar Madhavan;Goel, Apul;Dalela, Divakar;Goel, Madhu Mati;Rajender, Singh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9841-9846
    • /
    • 2014
  • Objectives: To compare the metabolic indices, lipid profile, androgens, and prostate specific antigen between prostate cancer and BPH and between grades of prostate cancer in a cross-sectional study. Materials and Methods: The study enrolled 95 cases of prostate cancer and 95 cases of benign prostatic hyperplasia (BPH). Prostate gland volume was measured using transrectal ultrasound. We compared insulin, testosterone, dihydrotestosterone, prostate specific antigen levels and lipid profile between prostate cancer of different grades and BPH. Further, prostate cancer patients were classified into low grade and high grade. Unpaired t-test for normally distributed variables and Man-Whitney U test for non-normal variables were used to assess differences. Results: We found that prostate cancer patients had significantly higher levels of insulin, testosterone, PSA, cholesterol, triglycerides, low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL) in comparison to their BPH counterparts. Higher levels of these parameters also correlated with a higher grade of the disease. Conclusions: We conclude that higher levels of insulin, testosterone, PSA, and cholesterol correlate with a higher risk of prostate cancer, and also with a higher grade of the disease.

Toxicity and Changes in Hepatic Metabolizing Enzyme System Induced by Repeated Administration of Pectenotoxin 2 Isolated from Marine Sponges (해면체에서 추출한 Pectenotoxin 2의 마우스에서의 반복적인 투여에 의한 독성 및 간대사효소계에 주는 영향)

  • Yoon, Mi-Young;Kim, Young-Chul
    • Korean Journal of Pharmacognosy
    • /
    • v.28 no.4
    • /
    • pp.280-285
    • /
    • 1997
  • Pectenotoxin 2 (PTX2), isolated from marine sponges, was examined for its hepatotoxic potential using male ICR mice. PTX2 $(20\;or\;100\;{\mu}g/kg/day,\;ip)$ was administered to mice repeatedly for one or two week. Histopathological examination revealed an increase in granularity in the liver from the mice treated with PTX2. PTX2 did not alter the parameters for hepatotoxicity and nephrotoxicity such as sorbitol dehydrogenase (SDH), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and blood urea nitrogen (BUN). Cytochrome P-450, cytochrome $b_5$, or NADPH cytochrome c reductase was net changed by repeated administration of PTX2. Hepatic microsomal activity of p-nitroanisole O-demethylase, but not aminopyrine N-demethylase, was slightly depressed by PTX2 administerd repeatedly $(100\;{\mu}g/kg/day,\;ip)$ fur 2 weeks. The toxicity of PTX2 $(200\;{\mu}g/kg/day,\;ip)$ was determined in mice pretreated with a metabolic inducer or inhibitor such as phenobarbital, 3-methyl-cholanthrene, $CoCl_2$, or SKF 525-A. Significant alterations in lethality and hepatotoxicity of PTX2 were observed in mice pretreated with a metabolic modulator. The results suggest that liver seems to be the target organ for PTX2 toxicity and also that induction of the PTX2 toxicity may be associated with hepatic drug metabolizing activity.

  • PDF

High Food Efficiency Ratio of Prepubertal Growth Period Leads to a Long-Term Susceptibility for Obesity and Insulin Resistance in Obesity-Prone and Obesity-Resistant Sprague Dawley Rats

  • Choi, Joo Sun
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.4
    • /
    • pp.830-840
    • /
    • 2017
  • Excessive body weight gain during the growth period of early life may predispose individuals towards obesity and metabolic disorder in later life. We investigated the possibility of using the food efficiency ratio as an early indicator for predicting susceptibility to diet-induced obesity and insulin resistance. Four-week-old, prepubertal, male Sprague Dawley rats were divided into obesity-prone and obesity-resistant groups based on food efficiency ratio values after five days on a high-fat diet. Metabolic parameters measured after 2, 6, and 10 weeks, and specific phenotypes were compared with each group. Obesity-prone rats had higher increases in body weight and fat mass compared to obesity-resistant rats over the study period. Obesity-prone rats became glucose intolerant early in this study and remained so throughout the experimental period, with increases in fat weight and leptin levels occurring first, followed by increases in insulin level. Gluconeogenesis and insulin resistance significantly increased in obesity-prone groups in which activities of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase were increased and glucokinase activity decreased. Higher food efficiency ratio at an early age was closely correlated with body fat accumulation, hyperleptinemia, and hyperinsulinemia of middle and elderly age. We suggest a high food efficiency ratio in prepubertal subjects may be a useful predictor of future obesity and insulin resistance.

Effects of exercise training on the biochemical pathways associated with sarcopenia

  • Seo, Dae Yun;Hwang, Boo Geun
    • Korean Journal of Exercise Nutrition
    • /
    • v.24 no.3
    • /
    • pp.32-38
    • /
    • 2020
  • [Purpose] Sarcopenia is considered one of the major causes of disability in the elderly population and is highly associated with aging. Exercise is an essential strategy for improving muscle health while aging and involves multiple metabolic and transcriptional adaptations. Although the beneficial effects of exercise modalities on skeletal muscle structure and function in aging are well recognized, the exact cellular and molecular mechanisms underlying the influence of exercise have not been fully elucidated. [Methods] We summarize the biochemical pathways involved in the progression and pathogenesis of sarcopenia and describe the beneficial effects of exercise training on the relevant signaling pathways associated with sarcopenia. [Results] This study briefly introduces current knowledge on the signaling pathways involved in the development of sarcopenia, effects of aerobic exercise on mitochondria-related parameters and mitochondrial function, and role of resistance exercise in the regulation of muscle protein synthesis against sarcopenia. [Conclusion] This review suggested that the beneficial effects of exercise are still under-explored, and accelerated research will help develop better modalities for the prevention, management, and treatment of sarcopenia.

What Is Normal for an Aging Heart?: A Prospective CMR Cohort Study

  • Johannes Kersten;Carsten Hackenbroch;Muriel Bouly;Benoit Tyl;Peter Bernhardt
    • Journal of Cardiovascular Imaging
    • /
    • v.30 no.3
    • /
    • pp.202-211
    • /
    • 2022
  • BACKGROUND: This study aims to investigate normal changes throughout aging of the heart in cardiac magnetic resonance (CMR) imaging in healthy volunteers. While type 2 diabetes mellitus is a frequent finding in the elderly population, also the influence of this circumstance in otherwise healthy persons is part of our study. METHODS: In this prospective single-center trial, 75 healthy subjects in distinct age groups and 10 otherwise healthy diabetics were enrolled. All subjects underwent functional, flow sensitive, native T2- and T1-mapping in a 1.5T CMR scanner. RESULTS: No differences in right and left ventricular ejection fractions were observed between aging healthy groups. Bi-ventricular volumes lowered significantly (p<0.001) between the age groups. There was also a significant decrease in myocardial T1 values, aortic distensibility, and left ventricular peak diastolic strain rates. There were no differences in T2 mapping and the other deformation parameters. Patients with type 2 diabetes mellitus had lower end-diastolic volume indexes; all the other measurements were comparable. CONCLUSIONS: Aging processes in the healthy heart involve a decrease in ventricular volumes, with ejection fractions remaining normal. Stiffening of the myocardium and aorta and a decrease in T1 values are potential indications of age-related remodeling. Type 2 diabetes mellitus seems to have no major influence on aging processes of the heart.

Potential of Immobilized Whole-Cell Methylocella tundrae as a Biocatalyst for Methanol Production from Methane

  • Mardina, Primata;Li, Jinglin;Patel, Sanjay K.S.;Kim, In-Won;Lee, Jung-Kul;Selvaraj, Chandrabose
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1234-1241
    • /
    • 2016
  • Methanol is a versatile compound that can be biologically synthesized from methane (CH4) by methanotrophs using a low energy-consuming and environment-friendly process. Methylocella tundrae is a type II methanotroph that can utilize CH4 as a carbon and energy source. Methanol is produced in the first step of the metabolic pathway of methanotrophs and is further oxidized into formaldehyde. Several parameters must be optimized to achieve high methanol production. In this study, we optimized the production conditions and process parameters for methanol production. The optimum incubation time, substrate, pH, agitation rate, temperature, phosphate buffer and sodium formate concentration, and cell concentration were determined to be 24 h, 50% CH4, pH 7, 150 rpm, 30℃, 100 mM and 50 mM, and 18 mg/ml, respectively. The optimization of these parameters significantly improved methanol production from 0.66 to 5.18 mM. The use of alginate-encapsulated cells resulted in enhanced methanol production stability and reusability of cells after five cycles of reuse under batch culture conditions.