DOI QR코드

DOI QR Code

Effects of exercise training on the biochemical pathways associated with sarcopenia

  • Seo, Dae Yun (Cardiovascular and Metabolic Disease Center, Inje University) ;
  • Hwang, Boo Geun (Department of Sport Rehabilitation, Tong Myong University)
  • Received : 2020.09.14
  • Accepted : 2020.09.23
  • Published : 2020.09.30

Abstract

[Purpose] Sarcopenia is considered one of the major causes of disability in the elderly population and is highly associated with aging. Exercise is an essential strategy for improving muscle health while aging and involves multiple metabolic and transcriptional adaptations. Although the beneficial effects of exercise modalities on skeletal muscle structure and function in aging are well recognized, the exact cellular and molecular mechanisms underlying the influence of exercise have not been fully elucidated. [Methods] We summarize the biochemical pathways involved in the progression and pathogenesis of sarcopenia and describe the beneficial effects of exercise training on the relevant signaling pathways associated with sarcopenia. [Results] This study briefly introduces current knowledge on the signaling pathways involved in the development of sarcopenia, effects of aerobic exercise on mitochondria-related parameters and mitochondrial function, and role of resistance exercise in the regulation of muscle protein synthesis against sarcopenia. [Conclusion] This review suggested that the beneficial effects of exercise are still under-explored, and accelerated research will help develop better modalities for the prevention, management, and treatment of sarcopenia.

Keywords

Acknowledgement

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A1B07040370).

References

  1. Barclay RD, Burd NA, Tyler C, Tillin NA, Mackenzie RW. The role of the IGF-1 signaling cascade in muscle protein synthesis and anabolic resistance in aging skeletal muscle. Front Nutr. 2019;6:146. https://doi.org/10.3389/fnut.2019.00146
  2. Huang DD, Yan XL, Fan SD, Chen XY, Yan JY, Dong QT, Chen WZ, Liu NX, Chen XL, Yu Z. Nrf2 deficiency promotes the increasing trend of autophagy during aging in skeletal muscle: a potential mechanism for the development of sarcopenia. Aging (Albany NY). 2020;12:5977-91. https://doi.org/10.18632/aging.102990
  3. Hinkley JM, Cornnell HH, Standley RA, Chen EY, Narain NR, Greenwood BP, Bussberg V, Tolstikov VV, Kiebish MA, Yi F, Vega RB, Goodpaster BH. Older adults with sarcopenia have distinct skeletal muscle phosphodiester, phosphocreatine, and phospholipid profiles. Aging Cell. 2020;19:e13135. https://doi.org/10.1111/acel.13135
  4. Park HS, Kim HC, Zhang D, Yeom H, Lim SK. The novel myokine irisin: clinical implications and potential role as a biomarker for sarcopenia in postmenopausal women. Endocrine. 2019;64:341-8. https://doi.org/10.1007/s12020-018-1814-y
  5. Morley JE. Treatment of sarcopenia: the road to the future. J Cachexia Sarcopenia Muscle. 2018;9:1196-9. https://doi.org/10.1002/jcsm.12386
  6. Fonseca H, Powers SK, Goncalves D, Santos A, Mota MP, Duarte JA. Physical inactivity is a major contributor to ovariectomy-induced sarcopenia. Int J Sports Med. 2012;33:268-78. https://doi.org/10.1055/s-0031-1297953
  7. Yang LJ, Wu GH, Yang YL, Wu YH, Zhang L, Wang MH, Mo LY, Xue G, Wang CZ, Weng XF. Nutrition, physical exercise, and the prevalence of sarcopenia in elderly residents in nursing homes in china. Med Sci Monit. 2019;25:4390-9. https://doi.org/10.12659/msm.914031
  8. Vikberg S, Sorlen N, Branden L, Johansson Jm Nordstrom A, Hult A, Nordstrom P. Effects of resistance training on functional strength and muscle mass in 70-year-old individuals with pre-sarcopenia: a randomized controlled trial. J Am Med Dir Assoc. 2019;20:28-34. https://doi.org/10.1016/j.jamda.2018.09.011
  9. Zhao J, Brault JJ, Schild A, Cao SP, Sandri M, Schiaffino S, Lecker SH, Goldberg AL. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 2007;6:472-83. https://doi.org/10.1016/j.cmet.2007.11.004
  10. Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB, Kan AV, Andriey S, Bauer J, Breille D, Cederholm T, Candler J, Meynard CD, Donini L, Harris T,, Kannt A, Guibert FK, Onder G, Papanicolaou D, Rolland Y, Rooks D,, Sieber C, Souhami E, Verlaan S, Zamboni M. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc. 2011;12:249-56. https://doi.org/10.1016/j.jamda.2011.01.003
  11. Adams SC, Segal RJ, McKenzie DC, Vallerand JR, Morielli AR, Mackey JR, Gelmon K, Friedenreich CM, Reid RD, Courneya KS. Impact of resistance and aerobic exercise on sarcopenia and dynapenia in breast cancer patients receiving adjuvant chemotherapy: a multicenter randomized controlled trial. Breast Cancer Res Treat. 2016;158:497-507. https://doi.org/10.1007/s10549-016-3900-2
  12. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimegeour A, Lawrence JC, Glass DJ, Yancopoulos GD. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol. 2001;3:1014-9. https://doi.org/10.1038/ncb1101-1014
  13. Pende M. mTOR, Akt, S6 kinases and the control of skeletal muscle growth. Bull Cancer. 2006;93:E39-43.
  14. Sandri M, Barberi L, Bijlsma AY, Blaauw B, Dyar KA, Milan G, Mammucari C, Meskers CGM, Pallafacchina G, Paoli A, Pion D, Roceri M, Romanello V, Serrano A L, Toniolo L, Larsson L, Maier AB, Munoz-Canoves P, Musaro A, Pende M, Reggiani C, Rizzuto R, Schiaffino S. Signalling pathways regulating muscle mass in ageing skeletal muscle: the role of the IGF1-Akt-mTOR-FoxO pathway. Biogerontology. 2013;14:303-23. https://doi.org/10.1007/s10522-013-9432-9
  15. Roschel H, Ugrinowistch C, Barroso R, Batista MAB, Souza EO, Aoki MS, Siqueira-Filho MA, Zanuto R, Carvalho CRO, Neves M, Mello MT, Valmor Tricoli. Effect of eccentric exercise velocity on akt/mtor/p70(s6k) signaling in human skeletal muscle. Appl Physiol Nutr Metab. 2011;36:283-90. https://doi.org/10.1139/h10-111
  16. Wu M, Falasca M, Blough ER. Akt/protein kinase B in skeletal muscle physiology and pathology. J Cell Physiol. 2011;226:29-36. https://doi.org/10.1002/jcp.22353
  17. O'Neill BT, Lee KY, Klaus K, Softic S, Krumpoch MT, Fentz J, Stanford KI, Robinson MM, Cai W, Kleinridders A, Pereira RO, Hirshman MF, Abel ED, Accili D, Goodyear LJ, Nair KS, Kahn CR. Insulin and IGF-1 receptors regulate FoxO-mediated signaling in muscle proteostasis. J Clin Invest. 2016;126:3433-46. https://doi.org/10.1172/JCI86522
  18. Carter ME, Brunet A. FOXO transcription factors. Curr Biol. 2007;17:R113-4. https://doi.org/10.1016/j.cub.2007.01.008
  19. Sandri M. Signaling in muscle atrophy and hypertrophy. Physiology (Bethesda). 2008;23:160-70. https://doi.org/10.1152/physiol.00041.2007
  20. Bowen TS, Schuler G, Adams V. Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J Cachexia Sarcopenia Muscle. 2015;6:197-207. https://doi.org/10.1002/jcsm.12043
  21. Meng SJ, Yu LJ. Oxidative stress, molecular inflammation and sarcopenia. Int J Mol Sci. 2010;11:1509-26. https://doi.org/10.3390/ijms11041509
  22. Giresi PG, Stevenson EJ, Theilhaber J, Koncarevic A, Parkington J, Fielding, RA, Kandarian SC. Identification of a molecular signature of sarcopenia. Physiol Genomics. 2005;21:253-63. https://doi.org/10.1152/physiolgenomics.00249.2004
  23. Yang W, Zhang Y, Li Y, Wu Z, Zhu D. Myostatin induces cyclin D1 degradation to cause cell cycle arrest through a phosphatidylinositol 3-kinase/AKT/GSK-3 beta pathway and is antagonized by insulin-like growth factor 1. J Biol Chem. 2007;282:3799-3808. https://doi.org/10.1074/jbc.M610185200
  24. Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ. Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am J Physiol Cell Physiol. 2009;296:C1258-70. https://doi.org/10.1152/ajpcell.00105.2009
  25. Yoshida T, Delafontaine P. Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy. Cells. 2020;9:E1970.
  26. Nakatani M, Takehara Y, Sugino H, Matsumoto M, Hashimoto O, Hasegawa Y, Murakami T, Uezumi A, Takeda S, Noji S, Sunada Y, Tsuchida K. Transgenic expression of a myostatin inhibitor derived from follistatin increases skeletal muscle mass and ameliorates dystrophic pathology in mdx mice. FASEB J. 2008;22:477-87. https://doi.org/10.1096/fj.07-8673com
  27. Li H, Malhotra S, Kumar A. Nuclear factor-kappa B signaling in skeletal muscle atrophy. J Mol Med (Berl). 2008;86:1113-26. https://doi.org/10.1007/s00109-008-0373-8
  28. Ashall L, Horton CA, Nelson DE, Paszek P, Harper CV, Sillitoe K, Ryan S, SDG, Unitt JF, Broomhead DS, Kell DB, Rand DA, See V, White MRH. Pulsatile stimulation determines timing and specificity of NF-kappaB-dependent transcription. Science. 2009;324:242-6. https://doi.org/10.1126/science.1164860
  29. Kolch W. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol. 2005;6:827-37. https://doi.org/10.1038/nrm1743
  30. Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002;12:9-18. https://doi.org/10.1038/sj.cr.7290105
  31. Hwang H, Jung WS, Kim J, Park HY, Lim K. Comparison of association between physical activity and resting metabolic rate in young and middle-aged Korean adults. J Exerc Nutrition Biochem. 2019;23:16-21. https://doi.org/10.20463/jenb.2019.0012
  32. Jung WS, Hwang H, Kim J, Park HY, Lim K. Effect of interval exercise versus continuous exercise on excess post-exercise oxygen consumption during energy-homogenized exercise on a cycle ergometer. J Exerc Nutrition Biochem. 2019;23:45-50.
  33. Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17:162-84. https://doi.org/10.1016/j.cmet.2012.12.012
  34. Yoo SZ, No MH, Heo JW, Park DH, Kang JH, Kim SH, Kwak HBum. Role of exercise in age-related sarcopenia. J Exerc Rehabil. 2018;14:551-8. https://doi.org/10.12965/jer.1836268.134
  35. Seo DY, Lee SR, Kwak HB, Park Hyuntea, Seo KW, Noh YH, Song KM, Ryu JK, Ko KS, Rhee BD, Han J. Exercise training causes a partial improvement through increasing testosterone and eNOS for erectile function in middle-aged rats. Exp Gerontol. 2018;108:131-8. https://doi.org/10.1016/j.exger.2018.04.003
  36. Seo DY, Kwak HB, Kim AH, Park SH, Heo JW, Kim HK, Ko JR, Lee SJ, Bang HS, Sim JW, Kim M, Han J. Cardiac adaptation to exercise training in health and disease. Pflugers Arch. 2020;472:155-68. https://doi.org/10.1007/s00424-019-02266-3
  37. Koo JH, Kang EB. Effects of treadmill exercise on the regulatory mechanisms of mitochondrial dynamics and oxidative stress in the brains of high-fat diet fed rats. J Exerc Nutrition Biochem. 2019;23:28-35. https://doi.org/10.20463/jenb.2019.0014
  38. Seo DY, Lee S, Figueroa A, Kwak YS, Kim N, Rhee BD, Ko KS, Bang HS, Baek YH, Han J. Aged garlic extract enhances exercise-mediated improvement of metabolic parameters in high fat diet-induced obese rats. Nutr Res Pract. 2012;6:513-9. https://doi.org/10.4162/nrp.2012.6.6.513
  39. Kwak SE, Shin HE, Zhang DD, Lee JH, Yoon KJ, Bae JH, Moon HY, Song W. Potential role of exercise-induced glucose-6-phosphate isomerase in skeletal muscle function. J Exerc Nutrition Biochem. 2019;23:28-33. https://doi.org/10.20463/jenb.2019.0014
  40. Nilsson MI, Tarnopolsky MA. Mitochondria and aging-the role of exercise as a countermeasure. Biology (Basel). 2019;8:40. https://doi.org/10.3390/biology8020040
  41. Cobley JN, Bartlett JD, Kayani A, Murray SW, Louhelainen J, Donovan T, Waldron S, Gregson W, Burniston JG, Morton JP, Close GL. PGC-1alpha transcriptional response and mitochondrial adaptation to acute exercise is maintained in skeletal muscle of sedentary elderly males. Biogerontology. 2012;13:621-31. https://doi.org/10.1007/s10522-012-9408-1
  42. Broskey NT, Greggio C, Boss A, Boutant M, Dwyer A, Schlueter L, Hans D, Gremion G, Kreis R, Boesch C, Canto C, Amati F. Skeletal muscle mitochondria in the elderly: effects of physical fitness and exercise training. J Clin Endocrinol Metab. 2014;99:1852-61. https://doi.org/10.1210/jc.2013-3983
  43. Li L, Muhlfeld C, Niemann B, Pan R, Li R, Hilfiker-Kleiner D, Chen Y, Rohrbach S. Mitochondrial biogenesis and PGC-1alpha deacetylation by chronic treadmill exercise: differential response in cardiac and skeletal muscle. Basic Res Cardiol. 2011;106:1221-34. https://doi.org/10.1007/s00395-011-0213-9
  44. Silvennoinen M, Ahtiainen JP, Hulmi JJ, Pekkala S, Taipale RS, Nindl BC, Laine T, Hakkinen K, Selanne H, Kyrolainen H, Kainulainen H. PGC-1 isoforms and their target genes are expressed differently in human skeletal muscle following resistance and endurance exercise. Physiol Rep. 2015;3:e12563. https://doi.org/10.14814/phy2.12563
  45. Kang C, Chung E, Diffee G, Ji LL. Exercise training attenuates aging-associated mitochondrial dysfunction in rat skeletal muscle: role of PGC-1alpha. Exp Gerontol. 2013;48:1343-50. https://doi.org/10.1016/j.exger.2013.08.004
  46. Song W, Kwak HB, Kim JH, Lawler JM. Exercise training modulates the nitric oxide synthase profile in skeletal muscle from old rats. J Gerontol A Biol Sci Med Sci. 2009;64:540-9.
  47. Marzetti E, Groban L, Wohlgemuth SE, Lees HA, Lin M, Jobe H, Giovannini S, Leeuwenburgh C, Carter CS. Effects of short-term GH supplementation and treadmill exercise training on physical performance and skeletal muscle apoptosis in old rats. Am J Physiol Regul Integr Comp Physiol. 2008;294:R558-67. https://doi.org/10.1152/ajpregu.00620.2007
  48. Lavin KM, Perkins RK, Jemiolo B, Raue U, Trappe SW, Trappe TA. Effects of aging and lifelong aerobic exercise on basal and exercise-induced inflammation. J Appl Physiol (1985). 2020;128:87-99. https://doi.org/10.1152/japplphysiol.00495.2019
  49. Poehlman ET, Rosen CJ, Copeland KC. The influence of endurance training on insulin-like growth factor-1 in older individuals. Metabolism. 1994;43:1401-5. https://doi.org/10.1016/0026-0495(94)90035-3
  50. Manetta J, Brun JF, Maimoun L, Callis A, Prefaut C, Mercier J. Effect of training on the GH/IGF-I axis during exercise in middle-aged men: relationship to glucose homeostasis. Am J Physiol Endocrinol Metab. 2002;283:E929-36. https://doi.org/10.1152/ajpendo.00539.2001
  51. Sakamoto K, Arnolds DE, Ekberg I, Thorell A, Goodyear LJ. Exercise regulates Akt and glycogen synthase kinase-3 activities in human skeletal muscle. Biochem Biophys Res Commun. 2004;319:419-25. https://doi.org/10.1016/j.bbrc.2004.05.020
  52. Pasini E, Le Douairon Lahaye S, Flati V, Assanelli D, Corsetti G, Speca S, Bernabei R, Calvani R, Marzetti E. Effects of treadmill exercise and training frequency on anabolic signaling pathways in the skeletal muscle of aged rats. Exp Gerontol. 2012;47:23-8. https://doi.org/10.1016/j.exger.2011.10.003
  53. Endo Y, Nourmahnad A, Sinha I. Optimizing skeletal muscle anabolic response to resistance training in aging. Front Physiol. 2020;11:874.
  54. Bolotta A, Filardo G, Abruzzo PM, Astolfi A, Sanctis PD, Martino AD, Hofer C, Indio V, Kern H, Lofler S, Marcacci M, Zampieri S, Marini M, Zucchini C. Skeletal muscle gene expression in long-term endurance and resistance trained elderly. Int J Mol Sci. 2020;21:3988. https://doi.org/10.3390/ijms21113988
  55. Fry CS, Drummond MJ, Glynn EL, Dickinson JM, Gundermann DM, Timmerman KL, Walker DK, Dhanani S, Volpi E, Rasmussen BB. Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. Skelet Muscle. 2011;1:11. https://doi.org/10.1186/2044-5040-1-11
  56. Raue U, Slivka D, Jemiolo B, Hollon C, Trappe S. Proteolytic gene expression differs at rest and after resistance exercise between young and old women. J Gerontol A Biol Sci Med Sci. 2007;62:1407-12. https://doi.org/10.1093/gerona/62.12.1407
  57. Melov S, Tarnopolsky MA, Beckman K, Felkey K, Hubbard A. Resistance exercise reverses aging in human skeletal muscle. PLoS One. 2007;2:e465. https://doi.org/10.1371/journal.pone.0000465
  58. Luo L, Lu AM, Wang Y, Hong A, Chen Y, Hu J, Li X, Qin ZH. Chronic resistance training activates autophagy and reduces apoptosis of muscle cells by modulating IGF-1 and its receptors, Akt/mTOR and Akt/FOXO3a signaling in aged rats. Exp Gerontol. 2013;48:427-36. https://doi.org/10.1016/j.exger.2013.02.009
  59. Park SS, Seo YK, Kwon KS. Sarcopenia targeting with autophagy mechanism by exercise. BMB Rep. 2019;52:64-9. https://doi.org/10.5483/BMBRep.2019.52.1.292