• 제목/요약/키워드: Metabolic intermediates

검색결과 57건 처리시간 0.026초

식물에서 shikimate 및 방향족 아미노산 생합성 경로와 이의 대사공학적 응용 (Biosynthetic pathway of shikimate and aromatic amino acid and its metabolic engineering in plants)

  • 임선형;박상규;하선화;최민지;김다혜;이종렬;김영미
    • Journal of Plant Biotechnology
    • /
    • 제42권3호
    • /
    • pp.135-153
    • /
    • 2015
  • 식물의 페닐알라닌, 티로신, 그리고 트립토판과 같은 방향족 아미노산은 단백질 합성의 구성 성분 뿐만 아니라 다양한 이차 대사물질들의 전구물질들이다. 이러한 방향족 아미노산 유래의 화합물들은 식물의 색소와 세포벽 구성성분을 포함하는 다양한 페놀릭 화합물들의 구성성분이자, 옥신과 살리실산과 같은 식물 호르몬으로써 중요한 역할을 수행한다. 또한 이들은 인간의 영양과 건강을 증진하는 높은 잠재력을 지니는 알칼로이드 및 글루코시놀레이트와 같은 천연산물로써 역할을 한다. 방향족 아미노산의 생합성경로는 shikimate 경로로부터 유래되는 공통의 중간기질인 chorismate를 공유한다. 트립토판은 중간기질로 anthranilate를 통해 합성되고, 페닐알라닌 및 티로신은 중간기질인 prephenate를 통해 합성된다. 본 논문에서는 방향족 아미노산 생합성경로에 관련한 모든 단계의 효소와 전사/전사후 수준에서의 그들의 유전자 조절에 대한 최근 연구들에 대해 종합적으로 되짚어 보면서, 추가적으로 식물의 방향족 아미노산 유래의 천연물질 생산을 증진시키기 위해 그 동안 시도되어온 대사 공학적 노력들에 대해서 소개하고자 한다.

인삼이 적혈구세포의 해당과정 및 막 투과도에 미치는 영향 (Effect of Panax Ginseng Saponin on Metabolism and Ion Transport in Human Erythrocytes)

  • 강복순;한경희
    • The Korean Journal of Physiology
    • /
    • 제17권2호
    • /
    • pp.125-133
    • /
    • 1983
  • Red cell glycolytic intermediates, metabolites and metabolic ratios were studied. Glycolytic intermediates were measured in neutralized perchloric acid extracts of red cell suspensions after 3 hr incubation at $37^{\circ}C$ in the presence and absence of saponin. Adenosine triphosphate(ATP), adenosine diphosphate(ADP), pyruvate and lactate were measured by enzymatic procedures involving stoichiometric oxidation or reduction of a pyridine nucleotide. Glucose was determined using glucose oxidase after zinc hydroxide extraction. The redox state was calculated from the lactate dehydrogenase equilibrium. Adenosine triphosphatase activity(ATPase) was measured by determining the amount of phosphate released from ATP by washed erythrocyte membranes(ghost) during 20 min. incubation. Both total hydrolysis and the amount of hydrolysis that occured in the presence of ouabain were measured. The second measurement yields Mg-ATPase and represents nonspecific ATPase activity of the membranes. The difference between total and Mg-ATPase activity can be attributed to Na-K-ATPase. For the measurement of sodium fluxes, human erythrocytes were preincubated in $^{22}Na$ for 3 hr at $37^{\circ}C$, washed and suspended in a tracer-free medium. The amount of $^{22}Na$ transported out of cells at any time was determined by analysis of supernatant samples taken at various time after addition of the labeled cells to isotope-free medium. The cells and medium were separated and the radioactivity appearing in the medium was measured. From the total radioactivity in the suspension and the radioactivity appearing in the medium at known time, the rate constant for sodium release was computed. The results are summarized as follows: 1) ATP and ATP/ADP were found to increase at every concentration of saponin tested whereas ADP declined at every cone. of saponin. The increase in pyruvate and lactate were observed at every cone, of saponin and thus $NAD^+/NADH$ computed from pyruvate/lactate also increased. Glucose utilization was stimulated by saponin. 2) $Na^+-K^+-ATPase$ activities showed a biphasic response to saponin, first increasing in lower concentration and then decreasing in higher concentration of saponin. 3) The efflux of sodium was significantly increased by saponin in the range of 5 to 10 mg%. The stimulatory effect of saponin on the rate constants for active(ouabain-sensitive) sodium efflux was inhibited by addition of ouabain.

  • PDF

Biodegradation of Aromatic Compounds by Nocardioform Actinomycetes

  • CHA CHANG-JUN;CERNIGLIA CARL E.
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2001년도 추계학술대회
    • /
    • pp.157-163
    • /
    • 2001
  • Mycolic acid-containing gram-positive bacteria, so called nocardioform actinomycetes, have become a great interest to environmental microbiologists due to their metabolic versatility, multidegradative capacity and potential for bioremediation of priority pollutants. For example, Rhodococcus rhodochrous N75 was able to metabolize 4-methy1catechol via a modified $\beta$-ketoadipate pathway whereby 4-methylmuconolactone methyl isomerase catalyzes the conversion of 4-methylmuconolactone to 3-methylmuconolactone in order to circumvent the accumulation of the 'dead-end' metabolite, 4-methylmuconolactone. R. rhodochrous N75 has also shown the ability to transform a range of alkyl-substituted catechols to the corresponding muconolactones. A novel 3-methylmuconolactone-CoAsynthetase was found to be involved in the degradation of 3-methylmuconolactone, which is not mediated in a manner analogous to the classical $\beta$-ketoadipate pathway but activated by the addition of CoA prior to hydrolysis of lactone ring, suggesting that the degradative pathway for methylaromatic compounds by gram-positive bacteria diverges from that of proteobacteria. Mycobacterium sp. Strain PYR-l isolated from oil-contaminated soil was capable of mineralizing various polyaromatic hydrocarbons (PAHs), such as naphthalene, phenanthrene, pyrene, fluoranthrene, 1-nitropyrene, and 6-nitrochrysene. The pathways for degradation of PAHs by this organism have been elucidated through the isolation and characterization of chemical intermediates. 2-D gel electrophoresis of PAH-induced proteins enabled the cloning of the dioxygenase system containing a dehydrogenase, the dioxygenase small ($\beta$)-subunit, and the dioxygenase large ($\alpha$)-subunit. Phylogenetic analysis showed that the large a subunit did not cluster with most of the known sequences except for three newly described a subunits of dioxygenases from Rhodococcus spp. and Nocardioides spp. 2-D gel analysis also showed that catalase-peroxidase, which was induced with pyrene, plays a role in the PAH metabolism. The survival and performance of these bacteria raised the possibility that they can be excellent candidates for bioremediation purposes.

  • PDF

Crystal Structure of Cytochrome cL from the Aquatic Methylotrophic Bacterium Methylophaga aminisulfidivorans MPT

  • Ghosh, Suparna;Dhanasingh, Immanuel;Ryu, Jaewon;Kim, Si Wouk;Lee, Sung Haeng
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권8호
    • /
    • pp.1261-1271
    • /
    • 2020
  • Cytochrome cL (CytcL) is an essential protein in the process of methanol oxidation in methylotrophs. It receives an electron from the pyrroloquinoline quinone (PQQ) cofactor of methanol dehydrogenase (MDH) to produce formaldehyde. The direct electron transfer mechanism between CytcL and MDH remains unknown due to the lack of structural information. To help gain a better understanding of the mechanism, we determined the first crystal structure of heme c containing CytcL from the aquatic methylotrophic bacterium Methylophaga aminisulfidivorans MPT at 2.13 Å resolution. The crystal structure of Ma-CytcL revealed its unique features compared to those of the terrestrial homologues. Apart from Fe in heme, three additional metal ion binding sites for Na+, Ca+, and Fe2+ were found, wherein the ions mostly formed coordination bonds with the amino acid residues on the loop (G93-Y111) that interacts with heme. Therefore, these ions seemed to enhance the stability of heme insertion by increasing the loop's steadiness. The basic N-terminal end, together with helix α4 and loop (G126 to Y136), contributed positive charge to the region. In contrast, the acidic C-terminal end provided a negatively charged surface, yielding several electrostatic contact points with partner proteins for electron transfer. These exceptional features of Ma-CytcL, along with the structural information of MDH, led us to hypothesize the need for an adapter protein bridging MDH to CytcL within appropriate proximity for electron transfer. With this knowledge in mind, the methanol oxidation complex reconstitution in vitro could be utilized to produce metabolic intermediates at the industry level.

Cytochrome P-450 의존성 radical 전달에 의한 Benzene, Toluene, Xylene의 대사기전 연구 (A Study on the metabolism mechanism of Benzene, Toluene and Xylene by Cytochrome P-450 dependent radical-mediated)

  • 김기웅;장성근;김양호;문영한
    • Toxicological Research
    • /
    • 제11권2호
    • /
    • pp.205-213
    • /
    • 1995
  • This study was undertaken to investigate the effects of organic solvents on xenobiotic metabollzing enzyme system in vivo by meaas of experimental conditions i.e. (1) single group which was treated by benzene (B), toluene (T) and xylene (X), respectively, (2) combination group which was treated by mixture of benzene+toluene (BT), benzene+xylene (BX), and toluene+xylene (TX), respectively, (3) mixture group which was treated by benzene+ toluene+xylene mixture (M), and to interpreat the interaction between the organic solvents metabolizing enzymes. 1. The contents of cytochrome P-450 in liver microsomes were increased (p < 0.01) in organic solvents treated groups, and the contents of cytochrome P-450 were increased by following order of B < T < M < BT=BX < X < TX. 2. The activity of cytochrome P-450 dependent AHHase was significantly higher in organic solvents treated groups than in control group (p < 0.01), and the activity of AHHase was increased by following order of B < T < BT=BX=TX=xylene < M. 3. The activity of NADPH P-450 reductase was significantly higher in organic solvents treated groups than in control group (p < 0.01), and the order of M < combinated group < X < T

  • PDF

The Effects of Long-Term, Low-Level Exposure to Monocyclic Aromatic Hydrocarbons on Worker's Insulin Resistance

  • Won, Yong-Lim;Ko, Yong;Heo, Kyung-Hwa;Ko, Kyung-Sun;Lee, Mi-Young;Kim, Ki-Woong
    • Safety and Health at Work
    • /
    • 제2권4호
    • /
    • pp.365-374
    • /
    • 2011
  • Objectives: This study was designed to investigate whether long-term, low-level exposure to monocyclic aromatic hydrocarbons (MAHs) induced insulin resistance. Methods: The subjects were 110 male workers who were occupationally exposed to styrene, toluene, and xylene. One hundred and ten age-matched male workers who had never been occupationally exposed to organic solvents were selected as a control group. Cytokines, which have played a key role in the pathogenesis of insulin resistance, and oxidative stress indices were measured. Assessment of exposure to MAHs was performed by measuring their ambient levels and their urinary metabolites in exposed workers, and the resulting parameters between the exposed group and non-exposed control groups were compared. Results: There was no significant difference in general characteristics and anthropometric parameters between the two groups; however, total cholesterol, fasting glucose, fasting insulin, and homeostasis model assessment of insulin resistance levels were significantly higher in the exposed group. Phenylglyoxylic acid levels showed significant association with tumor necrosis factor-${\alpha}$, total oxidative status, and oxidative stress index via multiple linear regression analysis. Further, there was a negative correlation between methylhippuric acid levels and total anti-oxidative capacity, and there was a significant relationship between MAHs exposure and fasting glucose levels, as found by multiple logistic regression analysis (odds ratio = 3.95, 95% confidence interval = 1.074-14.530). Conclusion: This study indicated that MAHs increase fasting glucose level and insulin resistance. Furthermore, these results suggested that absorbing the organic solvent itself and active metabolic intermediates can increase oxidative stress and cytokine levels, resulting in the changes in glucose metabolism and the induction of insulin resistance.

Genenation of structural diversity in polyketides by combinatorial biosynthesis of polyketides: Part I. Generation of multiple bioactive macrolides by hybrid modular polyketide synthases in Streptomyces venezuelae, Part II. Production of novel rifamycins by combinatorial biosynthesis

  • Yoon, Yeo-Joon
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2002년도 학술발표대회
    • /
    • pp.18-25
    • /
    • 2002
  • The pikromycin biosynthetic system in Streptomyces venezuleae is unique for its ability to produce two groups of antibiotics that include the 12-membered ring macrolides methymycin and neomethymycin, and the 14-membered ring macrolides narbomycin and pikromycin. The metabolic pathway also contains two post polyketide-modification enzymes, a glycosyltransferase and P450 hydroxylase that have unusually broad substrate specificities. In order to explore further the substrate flexibility of these enzymes a series of hybrid polyketide synthases were constructed and their metabolic products characterized. The plasmid-based replacement of the multifunctional protein subunits of the pikromycin PKS in S. venezuelae by the corresponding subunits from heterologous modular PKSs resulted in recombinant strains that produce both 12- and 14-membered ring macrolactones with predicted structural alterations. In all cases, novel macrolactones were produced and further modified by the DesVII glycosyltransferase and PikC hydroxylase leading to biologically active macrolide structures. These results demonstrate that hybrid PKSs in S. venezuelae can produce a multiplicity of new macrolactones that are modified further by the highly flexible DesVII glycosyltransferase and PikC hydroxylase tailoring enzymes. This work demonstrates the unique capacity of the S. venezuelae pikromycin pathway to expand the toolbox of combinatorial biosynthesis and to accelerate the creation of novel biologically active natural products. The polyketide backbone of rifamycin B is assembled through successive condensation and ${\beta}$-carbonyl processing of the extender units by the modular rifamycin PKS. The eighth module, in the RifD protein, contains nonfunctional DH domain and functional KR domain, which specify the reduction of the ${\beta}$-carbonyl group resulting in the C-21 bydroxyl of rifamycin B. A four amino acid substitution and one amino acid deletion were introduced in the putative NADPH binding motif in the proposed KR domain encoded by rifD. This strategy of mutation was based on the amino acid sequences of the corresponding motif of the KR domain of module 3 in the RifA protein, which is believed dysfunctional, so as to introduce a minimum alteration and retain the reading frame intact, yet ensure loss of function. The resulting strain produces linear polyketides, from tetraketide to octaketide, which are also produced by a rifD disrupted mutant as a consequence of premature termination of polyketide assembly. Much of the structural diversity within the polyketide superfamily of natural products is due to the ability of PKSs to vary the reduction level of every other alternate carbon atom in the backbone. Thus, the ability to introduce heterologous reductive segments such as ketoreductase (KR), dehydratase (DH), and enoylreductase (ER) into modules that naturally lack these activities would increase the power of the combinatorial biosynthetic toolbox. The dehydratase domain of module 7 of the rifamycin PKS, which is predicted to be nonfunctional in view of the sequence of the apparent active site, was replaced with its functional homolog from module 7 of rapamycin-producing polyketide synthase. The resulting mutant strain behaved like a rifC disrupted mutant, i.e., it accumulated the heptaketide intermediate and its precursors. This result points out a major difficulty we have encountered with all the Amycolatopsis mediterranei strain containing hybrid polyketide synthases: all the engineered strains prepared so far accumulate a plethora of products derived from the polyketide chain assembly intermediates as major products instead of just analogs of rifamycin B or its ansamycin precursors.

  • PDF

혐기성 조건에서 에탄올의 주입에 따른 프로피온산의 저감에 관한 연구 (Effect of Ethanol on the Reduction of Propionate under Anaerobic Condition)

  • 현승훈;김도희;박수진;황문현;김인수
    • 대한환경공학회지
    • /
    • 제22권10호
    • /
    • pp.1869-1879
    • /
    • 2000
  • 혐기성 소화공정 중 생성되는 주요 중간대사산물인 프로피온산의 분해대사에 대한 연구중 에탄올과의 산화 환원 반응인 coupling 반응으로써 혐기성 소화공정에서 프로피온산 축적을 저감시킬 수 있는 연구를 수행하였다. 따라서, 본 연구는 혐기성 공정에서 프로피온산의 전환에 따른 동력학적 반응과 에탄올과의 상호 반응에 따른 특정기질 선호영향을 모델에 적용하여 살펴보았다. 본 연구는 4단계의 실험으로 수행되었다. 1, 2, 3단계는 각기 다른 기질에 순화된 미생물들을 이용하여 프로피온산 1 g COD/L와 에탄올의 농도를 각각 0, 100, 200, 400과 1,000 mg/L로 주입하여 프로피온산과 에탄올의 혐기성 분해과정을 비교 연구하였으며, 4단계에서는 Glu-MCR과 HPr-MCR의 순화미생물의 혼합비를 조절하여 프로피온산 1 g COD/L를 주입하였을 때의 혐기성 분해를 연구하였다. 본 연구에서는 수정된 경쟁적 모델을 이용하여 특정기질 선호현상을 규명하였고, 에탄올 농도의 증가에 따라 아세트산 형성반응의 $K_{s2}$값의 증가와 메탄화 과정에서의 아세트산 생성 및 분해과정에 해당되는 $K_3$값이 일부 증가하는 결과를 얻을 수 있었다. 또한 순화미생물들에 따라 프로피온산과 에탄올의 분해에 미치는 영향이 다른 결과를 얻을 수 있었다.

  • PDF

화학적, 대사적 산화반응 중 생성되는 S-oxide를 이용한 O-ethyl S-methyl ethylphosphonothioate (1) 의 독성 기작에 관한 연구 (Study of the possible mode of action of O-ethyl S-methyl ethylphosphonothioate via the formation of S-oxide in chemical and metabolic oxidation systems)

  • 허장현;;한대성
    • 한국환경농학회지
    • /
    • 제10권2호
    • /
    • pp.167-177
    • /
    • 1991
  • O,S-dialkyl alkylphosphonothioates 계열 유기인제 농약의 체내 작용기작을 이해하기 위하여 model 화합물 (1), O-ethyl S-methyl ethylphosphonothioate [$LD_{50}$(rat, oral) 4.6mg/kg ; $K_i$(bovine erythrocyte acetylcholinesterase) 303 $M^{-1}min^{-1}$]이 선정되었다. 이 유기인계 화합물들은 체내에서 활성화(活性化) 과정을 겪으면서 독성(毒性)을 발현하는 것으로 가설(假說)되어져 왔다. 생체 내 mixed function oxidases에 의한 산화 활성화 과정을 화학적(化學的)으로 재현하기 위하여 두 종류의 유기산화제 즉, meta-chloroperoxybenzoic acid와 monoperoxyphthalic acid가 사용되었고, 대사적(代謝的) 산화를 재현하기 위하여 쥐 간(肝)에서 추출한 microsomal oxidation system을 이용한 in vitro 산화반응이 시도되었다. 산화반응 중간생성물인 S-oxide의 존재가 전구물질(1)의 가설적 산화 반응경로를 통해서 간접적으로나마 충분히 확인 되어질 수 있었다. 더욱이 ethanol을 이용한 trapping 실험에서 불안정한 산화중간물질인 S-oxide가 강한 phosphorylating agent라는 것이 확인되어, 전구물질 (1)로부터 산화반응을 거치면서 생성된 이 중간물질이 체내 신경전달에 중요한 역할을 하는 acetylcholinesterase를 phosphorylation하게 되고, 결국 이런 활성화 과정을 통해 이 계열의 화합물들이 독성을 발휘하는 것으로 이해될 수 있었다.

  • PDF

독성물질 해독작용에 미치는 인삼의 효능 (THE ROLE OF PANAX GINSENG IN DETOXIFICATION OF XENOBIOTICS)

  • 이재열;박진규;김은경;고지훈;이정숙;김경영
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1984년도 학술대회지
    • /
    • pp.21-26
    • /
    • 1984
  • 생체에 투입되는 이물질(xenobiotics)들이 돌연변이를 일으키고 나아가서는 암을 유발시키게 되는 것은 이물질들이 생체내에서 어떤 양상으로 대사되느냐, 즉 이물질이 독성화되는 과정과 해독되는 과정에 있어서의 활성도의 차이에 따라 좌우되는 것으로 알려져 있다. 따라서 인삼이 이물질 대사 및 해독작용에 어떤영향을 미치는가를 밝혀보기 위하여 동물 실험을 통하여 발암물질로 알려진 Benzopyrene과 그 외 다른 유독한 화학약물들의 대사과정에 미치는 영향을 조사하여 보았다. 인삼투여군에 있어서 cyt. P-450와 관련된 Monooxy-genase system이 선택적으로 유도되었고 또 해독작용에 필수적인 Conjugation도 현저히 상승되었다. 이와 같은 이물질 해독작용의 선택적 유도는 인삼이 이물질 대사과정에 영향을 미쳐 독성물질 해독 항진효능이 있음을 제시해 주는 것으로 해석되어진다.

  • PDF