• 제목/요약/키워드: Metabolic inhibition

검색결과 285건 처리시간 0.028초

Mitochondrial calcium uniporter inhibition attenuates mouse bone marrow-derived mast cell degranulation induced by beta-1,3-glucan

  • Dang, Van Cuong;Kim, Hyoung Kyu;Marquez, Jubert;Kim, Nari;Ko, Kyung Soo;Rhee, Byoung Doo;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권2호
    • /
    • pp.213-220
    • /
    • 2016
  • Mast cells are primary mediators of allergic inflammation. Beta-1,3-glucan (BG) protects against infection and shock by activating immune cells. Activation of the BG receptor induces an increase in intracellular $Ca^{2+}$, which may induce exocytosis. However, little is known about the precise mechanisms underlying BG activation of immune cells and the possible role of mitochondria in this process. The present study examined whether BG induced mast cell degranulation, and evaluated the role of calcium transients during mast cell activation. Our investigation focused on the role of the mitochondrial calcium uniporter (MCU) in BG-induced degranulation. Black mouse (C57) bone marrow-derived mast cells were stimulated with $0.5{\mu}g/ml$ BG, $100{\mu}g/ml$ peptidoglycan (PGN), or $10{\mu}M$ A23187 (calcium ionophore), and dynamic changes in cytosolic and mitochondrial calcium and membrane potential were monitored. BG-induced mast cell degranulation occurred in a time-dependent manner, and was significantly reduced under calcium-free conditions. Ruthenium red, a mitochondrial $Ca^{2+}$ uniporter blocker, significantly reduced mast cell degranulation induced by BG, PGN, and A23187. These results suggest that the mitochondrial $Ca^{2+}$ uniporter has an important regulatory role in BG-induced mast cell degranulation.

생강의 주성분인 6-Shogaol이 인체 약물대사효소인 Cytochrome P450에 미치는 영향 (Effects of 6-Shogaol, A Major Component of Zingiber officinale Roscoe, on Human Cytochrome P450 Enzymes in vitro)

  • 김진
    • 한국약용작물학회지
    • /
    • 제24권1호
    • /
    • pp.7-13
    • /
    • 2016
  • Background : Ginger has been extensively used in foods and traditional medicines in Asian countries. Despite its frequent consumption in daily life, the mechanism of potential interactions between ginger components-drug has not been examined. To elucidate the mechanism of governing the effects of 6-shogaol, a primary constituent of dried ginger, on human cytochrome P450 (CYP) isoenzymes an incubation studies were carried out using pooled human liver microsome (HLM). Methods and Results : CYP isoenzyme specific substrate was incubated with multiple concentrations of inhibitor, HLM and cofactors. 6-shogaol showed a potent inhibitory effect on CYP2C9, CYP1A2 and CYP2C19 with half maximal inhibitory concentration ($IC_{50}$) values of 29.20, 20.68 and $18.78{\mu}M$ respectively. To estimate the value of the inhibition constant ($K_i$) and the mode of inhibition, an incubation study with varying concentrations of each CYP isoenzyme-specific probe was performed. 6-shogaol inhibited CYP2C9 and CYP2C19 noncompetitively ($K_i=29.02$ and $19.26{\mu}M$ respectively), in contrast, the inhibition of CYP1A2 was best explained by competitive inhibition ($K_i=6.33{\mu}M$). Conclusions : These findings suggest that 6-shogaol may possess inhibitory effects on metabolic activities mediated by CYP1A2, CYP2C9 and CYP2C19 in humans.

Involvement of Oxidative Stress and Poly(ADP-ribose) Polymerase Activation in 3-Nitropropionic Acid-induced Cytotoxicity in Human Neuroblastoma Cells

  • Nam, Eun-Joo;Lee, Young-Jae;Oh, Young-Ah;Jung, Jin-Ah;Im, Hye-In;Koh, Seong-Eun;Maeng, Sung-Ho;Joo, Wan-Seok;Kim, Yong-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권6호
    • /
    • pp.325-331
    • /
    • 2003
  • 3-Nitropropionic acid (3-NP) inhibits electron transport in mitochondria, leading to a metabolic failure. In order to elucidate the mechanism underlying this toxicity, we examined a few biochemical changes possibly involved in the process, such as metabolic inhibition, generation of reactive oxygen species (ROS), DNA strand breakage, and activation of Poly(ADP-ribose) polymerase (PARP). Exposure of SK-N-BE(2)C neuroblastoma cells to 3-NP for 48 h caused actual cell death, while inhibition of mitochondrial function was readily observed when exposed for 24 h to low concentrations (0.2${\sim}$2 mM) of 3-NP. The earliest biochemical change detected with low concentration of 3-NP was an accumulation of ROS (4 h after 3-NP exposure) followed by degradation of DNA. PARP activation by damaged DNA was also detectable, but at a later time. The accumulation of ROS and DNA strand breakage were suppressed by the addition of glutathione or N-acetyl-L-cysteine (NAC), which also partially restored mitochondrial function and cell viability. In addition, inhibition of PARP also reduced the 3-NP-induced DNA strand breakage and cytotoxicity. These results suggest that oxidative stress and activation of PARP are the major factors in 3-NP-induced cytotoxicity, and that the inhibition of these factors may be useful in protecting neuroblastoma cells from 3-NP-induced toxicity.

Metabolism of an Anionic Fluorescent Dye, 1-Anilino-8-naphthalene Sulfonate (ANS) by Rat Liver Microsomes

  • Chung, Youn-Bok;Bae, Woong-Tak;Han, Kun
    • Archives of Pharmacal Research
    • /
    • 제21권6호
    • /
    • pp.677-682
    • /
    • 1998
  • The present study was designed to examine the metabolism of 1-anilino-8-naphthalene sulfonate (ANS), an anionic compound which is transported into liver via "multispecific organ ic anion transporter", with rat hepatic microsomes. TLC analysis indicated that the fluorescent metabolites were not produced to a measurable extent, which made it possible to assess the ANS metabolism by measuring the fluorescence disappearance. The metabolism of ANS was remarkably inhibited by the presence of SKF-525A as well as by the substitution of 02 by CO gas. ANS metabolism by microsomes also required NADPH as a cofactor. These results indicated that the microsomal monooxygenase system might be mainly responsible for the ANS metabolism. The maximum velocity ($V_{max}$) and Michaelis constant ($K_m$) were calculated to be $4.3{\pm}0.2$ nmol/min/mg protein and $42.1{\pm}2.0\;{\mu}M$, respectively. Assuming that 1g of liver contains 32mg of microsomal protein, the $V_{max}$ value was extrapolated to that per g of liver ($V_{max}^I$). The intrinsic metabolic clearance ($CL_{int}$) under linear conditions calculated from this in vitro metabolic study was 3.3ml/min/g liver, being comparable with that (3.0ml/min/g liver) calculated by analyzing the in vivo plasma disappearance curve in a previous study. Furthermore, the effects of other organic anions on the metabolism of ANS were examined. Bromophenolblue (BPB) and rose bengal (RB) competitively inhibited the metabolism of ANS, while BSP inhibited it only slightly. The inhibition constant ($K_i$) of BPB ($6\;{\mu}M$) was much smaller than that of RB ($200\;{\mu}M$). In conclusion, the microsomal monooxygenase system plays a major role in the metabolism of ANS, and other unmetabolizable organic anions (BPB and RB) compete for this metabolism.

  • PDF

Regulation of glucose and glutamine metabolism to overcome cisplatin resistance in intrahepatic cholangiocarcinoma

  • So Mi Yang;Jueun Kim;Ji-Yeon Lee;Jung-Shin Lee;Ji Min Lee
    • BMB Reports
    • /
    • 제56권11호
    • /
    • pp.600-605
    • /
    • 2023
  • Intrahepatic cholangiocarcinoma (ICC) is a bile duct cancer and a rare malignant tumor with a poor prognosis owing to the lack of an early diagnosis and resistance to conventional chemotherapy. A combination of gemcitabine and cisplatin is the typically attempted first-line treatment approach. However, the underlying mechanism of resistance to chemotherapy is poorly understood. We addressed this by studying dynamics in the human ICC SCK cell line. Here, we report that the regulation of glucose and glutamine metabolism was a key factor in overcoming cisplatin resistance in SCK cells. RNA sequencing analysis revealed a high enrichment cell cycle-related gene set score in cisplatin-resistant SCK (SCK-R) cells compared to parental SCK (SCK WT) cells. Cell cycle progression correlates with increased nutrient requirement and cancer proliferation or metastasis. Commonly, cancer cells are dependent upon glucose and glutamine availability for survival and proliferation. Indeed, we observed the increased expression of GLUT (glucose transporter), ASCT2 (glutamine transporter), and cancer progression markers in SCK-R cells. Thus, we inhibited enhanced metabolic reprogramming in SCK-R cells through nutrient starvation. SCK-R cells were sensitized to cisplatin, especially under glucose starvation. Glutaminase-1 (GLS1), which is a mitochondrial enzyme involved in tumorigenesis and progression in cancer cells, was upregulated in SCK-R cells. Targeting GLS1 with the GLS1 inhibitor CB-839 (telaglenastat) effectively reduced the expression of cancer progression markers. Taken together, our study results suggest that a combination of GLUT inhibition, which mimics glucose starvation, and GLS1 inhibition could be a therapeutic strategy to increase the chemosensitivity of ICC.

Inhibition of Osteoclast Differentiation and Promotion of Osteogenic Formation by Wolfiporia extensa Mycelium

  • Tae Hyun Son;Shin-Hye Kim;Hye-Lim Shin;Dongsoo Kim;Jin-Sung Huh;Rhim Ryoo;Yongseok Choi;Sik-Won Choi
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권9호
    • /
    • pp.1197-1205
    • /
    • 2023
  • Osteoporosis, Greek for "porous bone," is a bone disease characterized by a decrease in bone strength, microarchitectural changes in the bone tissues, and an increased risk of fracture. An imbalance of bone resorption and bone formation may lead to chronic metabolic diseases such as osteoporosis. Wolfiporia extensa, known as "Bokryung" in Korea, is a fungus belonging to the family Polyporaceae and has been used as a therapeutic food against various diseases. Medicinal mushrooms, mycelium and fungi, possess approximately 130 medicinal functions, including antitumor, immunomodulating, antibacterial, hepatoprotective, and antidiabetic effects, and are therefore used to improve human health. In this study, we used osteoclast and osteoblast cell cultures treated with Wolfiporia extensa mycelium water extract (WEMWE) and investigated the effect of the fungus on bone homeostasis. Subsequently, we assessed its capacity to modulate both osteoblast and osteoclast differentiation by performing osteogenic and anti-osteoclastogenic activity assays. We observed that WEMWE increased BMP-2-stimulated osteogenesis by inducing Smad-Runx2 signal pathway axis. In addition, we found that WEMWE decreased RANKL-induced osteoclastogenesis by blocking c-Fos/NFATc1 via the inhibition of ERK and JNK phosphorylation. Our results show that WEMWE can prevent and treat bone metabolic diseases, including osteoporosis, by a biphasic activity that sustains bone homeostasis. Therefore, we suggest that WEMWE can be used as a preventive and therapeutic drug.

유방암세포에서 괴화 에탄올 추출물의 NF-${\kappa}B$ 의존적인 MMP-9 발현의 조절 규명을 위한 연구 (Effects of Flos Sophorae Ethanol Extract on NF-${\kappa}B$ Dependent MMP-9 Expression in Human Breast Cancer Cell)

  • 김정미;이영래;황진기;김미성;김하림;박연주;유용욱;김성철;류도곤;권강범
    • 동의생리병리학회지
    • /
    • 제28권1호
    • /
    • pp.22-28
    • /
    • 2014
  • Flos Sophorae, the dried flower bud of Sophora japonica L, possesses anti-inflammatory properties, prevents and treats blood capillary and hypertension diseases and can also be used as a hemostat. However, the effect of Flos Sophorae on breast cancer invasion is unknown. Matrix metalloproteinase-9 (MMP-9), which degrades the extracellular matrix, is a major component in cancer cell invasion. In this study, we investigated the inhibitory effect of Flos Sophorae extract (FSE) on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced Matrix metalloproteinase-9 (MMP-9) expression and cell invasion, as well as the molecular mechanisms involved in Michigan Cancer Foundation-7 (MCF-7) cells. FSE inhibited the TPA-induced transcriptional activation of nuclear factor-kappa B (NF-${\kappa}B$). These results indicate that FSE-mediated inhibition of TPA-induced MMP-9 expression and cell invasion involves the suppression of NF-${\kappa}B$ pathway in MCF-7 cells. Thus, FSE may have therapeutic potential for controlling breast cancer invasiveness.

Benzo(a)pyrene의 돌연변이원성에 대한 유기게르마늄(GE-132)의 항돌연변이 효과 (Antimutagenic Effect of Organic Germanium(GE-132) on the Mutagenicity of Benzo(a)pyrene)

  • 이효민;정용;정기화;김재완;권순경
    • 약학회지
    • /
    • 제37권1호
    • /
    • pp.18-29
    • /
    • 1993
  • This study was initiated to investigate the effective action and mechanism of GE-132 (Carboxyethylgermanium sesquioxide)on benzo(a)pyrene, which have strong carcinogenicity and mutagenicity. To confirm desmutagenic effect (inhibition of metabolic processes of benzo(a)pyrene with S9 Mix or inactivation of the mutagenicity of benzo(a)pyrene metabolites) and antimutagenic effect (inhibition of gene-expression of reverted genes) of GE-132 against benzo(a)pyrene using with Salmonella typhimuyium TA98 Ames test was performed. The revertants in desmutagenicity test were decreased significantly in the combined groups of benzo(a)pyrene and GE-132 than benzo(a)pyrene only, without inhibition the metabolism of benzo(a)pyrene by S9 Mix. The ideal combined groups of benzo(a)pyrene and GE-132 were 10 $\mu{M}$ and 10mg, 20 $\mu{M}$ and 20mg, 100 $\mu{M}$ and 30 mg, respectively. Then, the revertants in antimutagenicity test, which was studied the direct action of GE-132 on the induction of revertant cells by Salmonella typhimurium TA98 and activated benzo(a)pyrene were decreased significantly in the treated groups of GE-132 than no treated groups. The number of revertants of Salmonella typhimurium TA98 were reduced with increasing amounts of GE-132. From the above results, it was found that GE-132 inactivated the mutagenic metabolites of benzo(a)pyrene without inhibition of the enzyme action in the S9 Mix, and GE132 showed antimutagenic effect which have inhibitory action of reverted gene expression.

  • PDF

Physiologic and epigenetic effects of nutrients on disease pathways

  • Soo-Hyun Park;Jaein Lee;Jin-Taek Hwang;Min-Yu Chung
    • Nutrition Research and Practice
    • /
    • 제17권1호
    • /
    • pp.13-31
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Epigenetic regulation by nutrients can influence the development of specific diseases. This study sought to examine the effect of individual nutrients and nutrient families in the context of preventing chronic metabolic diseases via epigenetic regulation. The inhibition of lipid accumulation and inflammation by nutrients including proteins, lipids, vitamins, and minerals were observed, and histone acetylation by histone acetyltransferase (HAT) was measured. Correlative analyses were also performed. MATERIALS/METHODS: Nutrients were selected according to information from the Korean Ministry of Food and Drug Safety. Selected nutrient functionalities, including the attenuation of fatty acid-induced lipid accumulation and lipopolysaccharide-mediated acute inflammation were evaluated in mouse macrophage Raw264.7 and mouse hepatocyte AML-12 cells. Effects of the selected nutrients on in vitro HAT inhibition were also evaluated. RESULTS: Nitric oxide (NO) production correlated with HAT activity, which was regulated by the amino acids group, suggesting that amino acids potentially contribute to the attenuation of NO production via the inhibition of HAT activity. Unsaturated fatty acids tended to attenuate inflammation by inhibiting NO production, which may be attributable to the inhibition of in vitro HAT activity. In contrast to water-soluble vitamins, the lipid-soluble vitamins significantly decreased NO production. Water- and lipid-soluble vitamins both exhibited significant inhibitory activities against HAT. In addition, calcium and manganese significantly inhibited lipid accumulation, NO production, and HAT activity. CONCLUSIONS: Several candidate nutrients and their family members may have roles in the prevention of diseases, including hepatic steatosis and inflammation-related diseases (i.e., nonalcoholic steatohepatitis) via epigenetic regulation. Further studies are warranted to determine which specific amino acids, unsaturated fatty acids and lipid-soluble vitamins or specific minerals influence the development of steatosis and inflammatory-related diseases.

Anti-obesity and hypolipidemic effects of Rheum undulatum in high-fat diet-fed C57BL/6 mice through protein tyrosine phosphatase 1B inhibition

  • Lee, Woo-Jung;Yoon, Goo;Hwang, Ye-Ran;Kim, Yong-Kee;Kim, Su-Nam
    • BMB Reports
    • /
    • 제45권3호
    • /
    • pp.141-146
    • /
    • 2012
  • Protein tyrosine phosphatase 1B (PTP1B) is important in the regulation of metabolic diseases and has emerged as a promising signaling target. Previously, we reported the PTP1B inhibitory activity of Rheum undulatum (RU). In the present study, we investigated the metabolic regulatory effects of RU in a high-fat diet (HFD) model. RU treatment significantly blocked body weight gain, which was accompanied by a reduction of feed efficiency. In addition, it led to a reduction of liver weight mediated by overexpression of PPAR${\alpha}$ and CPT1 in the liver, and an increase in the expression of adiponectin, aP2, and UCP3 in adipose tissue responsible for the reduction of total and LDL-cholesterol levels. Chrysophanol and physcion from RU significantly inhibited PTP1B activity and strongly enhanced insulin sensitivity. Altogether, our findings strongly suggest that 2 compounds are novel PTP1B inhibitors and might be considered as anti-obesity agents that are effective for suppressing body weight gain and improving lipid homeostasis.