• 제목/요약/키워드: Metabolic flux

검색결과 109건 처리시간 0.021초

Biocatalytic Oxidation-Reduction of Pyruvate and Ethanol by Weissella kimchii sk10 Under Aerobic and Anaerobic Conditions

  • Kang, Hye-Sun;Park, Sun-Mi;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권5호
    • /
    • pp.914-918
    • /
    • 2004
  • This study was carried out to analyze the metabolic flux of W. kimchii sk10 on pyruvate and ethanol as a carbon source. The sk10 grown on ethanol produced acetate under aerobic conditions rather than under anaerobic conditions. The lactate and acetate were produced on ethanol plus pyruvate by the sk10 grown under aerobic and anaerobic conditions, respectively. The resting cell of sk10 produced 99.1 mM acetate and 17.3 mM lactate under aerobic conditions and 51.1 mM acetate and 62.4 mM lactate under anaerobic conditions from ethanol plus pyruvate, respectively. This result is thought to be due to the difference in the $NADH/NAD^+$ ratio depending on the growth conditions. The 11-fold overproduction of NADH peroxidase results in a low $NADH/NAD^+$ratio under aerobic growth conditions. At the low $NADH/NAD^+$ ratio, the metabolic flux of pyruvate toward lactate has to be shifted to a flux toward acetate without NADH oxidation to $NAD^+$, and ethanol oxidation to acetate coupled to $NAD^+$ reduction to NADH has to be activated.

The Pentose Phosphate Pathway as a Potential Target for Cancer Therapy

  • Cho, Eunae Sandra;Cha, Yong Hoon;Kim, Hyun Sil;Kim, Nam Hee;Yook, Jong In
    • Biomolecules & Therapeutics
    • /
    • 제26권1호
    • /
    • pp.29-38
    • /
    • 2018
  • During cancer progression, cancer cells are repeatedly exposed to metabolic stress conditions in a resource-limited environment which they must escape. Increasing evidence indicates the importance of nicotinamide adenine dinucleotide phosphate (NADPH) homeostasis in the survival of cancer cells under metabolic stress conditions, such as metabolic resource limitation and therapeutic intervention. NADPH is essential for scavenging of reactive oxygen species (ROS) mainly derived from oxidative phosphorylation required for ATP generation. Thus, metabolic reprogramming of NADPH homeostasis is an important step in cancer progression as well as in combinational therapeutic approaches. In mammalian, the pentose phosphate pathway (PPP) and one-carbon metabolism are major sources of NADPH production. In this review, we focus on the importance of glucose flux control towards PPP regulated by oncogenic pathways and the potential therein for metabolic targeting as a cancer therapy. We also summarize the role of Snail (Snai1), an important regulator of the epithelial mesenchymal transition (EMT), in controlling glucose flux towards PPP and thus potentiating cancer cell survival under oxidative and metabolic stress.

Flux Regulation Patterns and Energy Audit of E. coli B/r and K-12

  • Lee, Jin-Won;Goel, Akshay;Ataai, Mohammad-M.;Domach, Michael-M.
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권2호
    • /
    • pp.258-267
    • /
    • 2002
  • A flux determination methodology has been built which enables to develop constrained stoichiometric relationships and metabolic balances. The analysis differs from those developed for anaerobic growth conditions in that cell mass formation is a significant sink for carbon. When combined with experimental measurements, a determined system of equations results yielded tricarboxylic acid (TCA) cycle and glycolytic fluxes. The methodology was implemented to determine the fluxes of E. coli B/r and K12, and it was found that as the growth rate in a glucose minimal medium increased, the cells became increasing glycolytic and the TCA fluxes either leveled off or declined. The pattern identified for the TCA fluxes corresponded to ${\alpha}$-ketoglutarate dehydrogenase's induction-repression pattern, thereby suggesting that the induction-repression of the enzyme could result in significant flux changes. When the minimum flux solution was contrasted to the glycolytic and TCA fluxes determined, two observations were made. First, the minimum flux could provide the cell's biosynthetic ATP requirements. Second, at a high growth rate in a glucose medium, the excess glycolytic flux exceeded that of the TCA cycle, which appeared to more closely match the biosynthetic needs.

Effect of carbon substrate on the intracellular fluxes in succinic acid producing Escherichia coli.

  • Hong, Soon-Ho;Lee, Dong-Yup;Kim, Tae-Yong;Lee, Sang-Yup;Park, Sun-Won
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2003년도 제2차 연례학술대회 발표논문집
    • /
    • pp.251-257
    • /
    • 2003
  • Metabolic engineering has become a new paradigm for the more efficient production of desired bioproducts. Metabolic engineering can be defined as directed modification of cellular metabolism and properties through the introduction, deletion, and modification of metabolic pathways by using recombinant DNA and other molecular biological tools. During the last decade, metabolic flux analysis(MFA) has become an essential tool fur metabolic engineering. By MFA, the intracellular metabolic fluxes can be quantified by the measurement of extracellular metabolite concentrations in combination with the stoichiometry of intracellular reactions and mass balances. The usefulness and functionality of MFA are demonstrated by applying to metabolic pathways in E. coli. First, a large-scale in silico E. coli model is constructed, and then the effects of carbon sources on intracellular flux distributions and succinic acid production were investigated on the basis of the uptake and secretion rates of the relevant metabolites. The results indicated that succinic acid yields increased in order of gluconate, glucose and sorbitol. Acetic acid and lactic acid were produced as major products rather than when gluconate and glucose were used carbon sources. The results indicated that among three carbon sources available, the most reduced substrate is sorbitol which yields efficient succinic acid production.

  • PDF

Microbial Biotechnology Powered by Genomics, Proteomics, Metabolomics and Bioinformatics

  • Lee, Sang-Yup
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2000년도 International Symposium on Bioinformatics
    • /
    • pp.13-16
    • /
    • 2000
  • Microorganisms have been widely employed for the production of useful bioproducts including primary metabolites such as ethanol, succinic acid, acetone and butanol, secondary metabolites represented by antibiotics, proteins, polysaccharides, lipids and many others. Since these products can be obtained in small quantities under natural condition, mutation and selection processes have been employed for the improvement of strains. Recently, metabolic engineering strategies have been employed for more efficient production of these bioproducts. Metabolic engineering can be defined as purposeful modification of cellular metabolic pathways by introducing new pathways, deleting or modifying the existing pathways for the enhanced production of a desired product or modified/new product, degradation of xenobiotics, and utilization of inexpensive raw materials. Metabolic flux analysis and metabolic control analysis along with recombinant DNA techniques are three important components in designing optimized metabolic pathways, This powerful technology is being further improved by the genomics, proteomics, metabolomics and bioinformatics. Complete genome sequences are providing us with the possibility of addressing complex biological questions including metabolic control, regulation and flux. In silico analysis of microbial metabolic pathways is possible from the completed genome sequences. Transcriptome analysis by employing ONA chip allows us to examine the global pattern of gene expression at mRNA level. Two dimensional gel electrophoresis of cellular proteins can be used to examine the global proteome content, which provides us with the information on gene expression at protein level. Bioinformatics can help us to understand the results obtained with these new techniques, and further provides us with a wide range of information contained in the genome sequences. The strategies taken in our lab for the production of pharmaceutical proteins, polyhydroxyalkanoate (a family of completely biodegradable polymer), succinic acid and me chemicals by employing metabolic engineering powered by genomics, proteomics, metabolomics and bioinformatics will be presented.

  • PDF

Mechanism Analysis of Effect of Oxygen on Molecular Weight of Hyaluronic Acid Produced by Streptococcus zooepidemicus

  • Duan, Xu-Jie;Niu, Hong-Xing;Tan, Wen-Song;Zhang, Xu
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권3호
    • /
    • pp.299-306
    • /
    • 2009
  • Dissolved oxygen (DO) has a significant effect on the molecular weight of hyaluronic acid (HA) during the fermentation of Streptococcus zooepidemicus. Therefore, to further investigate the effect of DO on the yield and molecular weight of HA, this study compared the metabolic flux distribution of S. zooepidemicus under aerobic conditions at various DO levels. The metabolic flux analysis demonstrated that the HA synthesis pathway, considered a dependent network, was little affected by the DO level. In contrast, the fluxes of lactate and acetate were greatly influenced, and more ATP was generated concomitant with acetate at a high DO level. Furthermore, the has gene expression and HA synthase activity were both repressed under anaerobic conditions, yet not obviously affected under aerobic conditions at various DO levels. Therefore, it was concluded that the HA molecular weight would seem to depend on the concomitant effect of the generation of ATP and reactive oxygen species. It is expected that this work will contribute to a better understanding of the effect of the DO level on the mechanism of the elongation of HA chains.

Regulation of Metabolic Flux in Lactobacillus casei for Lactic Acid Production by Overexpressed ldhL Gene with Two-Stage Oxygen Supply Strategy

  • Ge, Xiang-Yang;Xu, Yan;Chen, Xiang;Zhang, Long-Yun
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권1호
    • /
    • pp.81-88
    • /
    • 2015
  • This study describes a novel strategy to regulate the metabolic flux for lactic acid production in Lactobacillus casei. The ldhL gene encoding L-lactate dehydrogenase (L-LDH) was overexpressed in L. casei, and a two-stage oxygen supply strategy (TOS) that maintained a medium oxygen supply level during the early fermentation phase, and a low oxygen supply level in the later phase was carried out. As a consequence, a maximum L-LDH activity of 95.6 U/ml was obtained in the recombinant strain, which was over 4-fold higher than that of the initial strain. Under the TOS for L. casei (pMG-ldhL), the maximum lactic acid concentration of 159.6 g/l was obtained in 36 h, corresponding to a 62.8% increase. The results presented here provide a novel way to regulate the metabolic flux of L. casei for lactic acid production in different fermentation stages, which is available to enhance organic acid production in other strains.

계층적 유전자 조절 네트워크와 대사 네트워크를 통합한 가상 미생물 시스템의 모델링 (Modeling of in Silico Microbe System based on the Combination of a Hierarchical Regulatory Network with Metabolic Network)

  • 이성근;한상일;김경훈;김영한;황규석
    • 제어로봇시스템학회논문지
    • /
    • 제11권10호
    • /
    • pp.843-850
    • /
    • 2005
  • FBA(flux balance analysis) with Boolean rules for representing regulatory events has correctly predicted cellular behaviors, such as optimal flux distribution, maximal growth rate, metabolic by-product, and substrate concentration changes, with various environmental conditions. However, until now, since FBA has not taken into account a hierarchical regulatory network, it has limited the representation of the whole transcriptional regulation mechanism and interactions between specific regulatory proteins and genes. In this paper, in order to solve these problems, we describe the construction of hierarchical regulatory network with defined symbols and the introduction of a weight for representing interactions between symbols. Finally, the whole cellular behaviors with time were simulated through the linkage of a hierarchical regulatory network module and dynamic simulation module including FBA. The central metabolic network of E. coli was chosen as the basic model to identify our suggested modeling method.