• Title/Summary/Keyword: Metabolic factor

Search Result 619, Processing Time 0.027 seconds

Inhibition of liver fibrosis by sensitization of human hepatic stellate cells by combined treatment with galtanin and TARIL

  • Dong-Oh Moon
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.138-143
    • /
    • 2023
  • Liver fibrosis is caused by metabolic problems such as cholestasis, genetic problems, or viral infections. Inhibiting hepatic stellate cell (HSC) activation or inducing selective apoptosis of activated HSCs is used as a treatment strategy for liver fibrosis. It has been reported that when HSCs are activated, their apoptosis sensitivity to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is enhanced because the expression of death receptor 5 is elevated. Finding a natural compound that can enhance the apoptotic effect of TRAIL on HSCs is a necessary strategy for liver fibrosis treatment. It was confirmed here that mangosteen-derived gartanin increased the effect of TRAIL-induced apoptosis by increasing the expression of DR5 in a p38-dependent manner in the hepatic stellate cell line LX-2. Combined treatment with gartanin and TRAIL accelerated DNA cleavage through caspase-3 activation and enhanced antifibrotic effects in LX-2 cells.

Exploring the Potential of Glycolytic Modulation in Myeloid-Derived Suppressor Cells for Immunotherapy and Disease Management

  • Jisu Kim;Jee Yeon Choi;Hyeyoung Min;Kwang Woo Hwang
    • IMMUNE NETWORK
    • /
    • v.24 no.3
    • /
    • pp.26.1-26.19
    • /
    • 2024
  • Recent advancements in various technologies have shed light on the critical role of metabolism in immune cells, paving the way for innovative disease treatment strategies through immunometabolism modulation. This review emphasizes the glucose metabolism of myeloid-derived suppressor cells (MDSCs), an emerging pivotal immunosuppressive factor especially within the tumor microenvironment. MDSCs, an immature and heterogeneous myeloid cell population, act as a double-edged sword by exacerbating tumors or mitigating inflammatory diseases through their immune-suppressive functions. Numerous recent studies have centered on glycolysis of MDSC, investigating the regulation of altered glycolytic pathways to manage diseases. However, the specific changes in MDSC glycolysis and their exact functions continue to be areas of ongoing discussion yet. In this paper, we review a range of current findings, including the latest research on the alteration of glycolysis in MDSCs, the consequential functional alterations in these cells, and the outcomes of attempts to modulate MDSC functions by regulating glycolysis. Ultimately, we will provide insights into whether these research efforts could be translated into clinical applications.

Image Evaluation and Association Analysis of the Cardiovascular Disease of the Degree of Pancreatic Steatosis in Ultrasonography

  • Cho, Jin-Young;Ye, Soo-Young;Ko, Seong-Jin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.6
    • /
    • pp.375-379
    • /
    • 2016
  • Increasing fat tissue of obese people, increases the rate of cardiovascular disease, diabetes, metabolic syndromes and dyslipidemia. An increase in the focal tissue of pancreas is a known risk factor of these diseases. Although there exists sufficient research on the diagnosis and treatment of pancreatic cancer, studies have been done on fatty pancreas. In this study, based on ultrasound imaging and using a texture characteristic of GLCM, fatty pancreas was divided into three categories: mild, moderate and severe. We compared and analyzed the three groups was by Pancreatic ultrasonography and body characteristics, serological tests, pressure and the degree of arteriosclerosis, against normal control group. The following parameters of control and test groups were measured: WC (waist circumference),BMI (body mass index), TC (total cholesterol), TG (triglyceride), HDL-C (High-density lipoprotein cholesterol) and LDL-C (Low-density lipoprotein cholesterol), SBP (systolic blood pressure), BST (Blood Sugar Test) and aortic PWV (pulse wave velocity). We observed the values correspondingly increasing fat deposition. However, ABI (Ankle Brachial pressure index) stenosis and HDL-C levels decreased with increasing fat deposit (p <0.05); a drop in these parameters are known to be harmful to the human body. The difference in texture characteristics between normal control group and pancreatic fatty group (mild, moderate, and severe) was statistically confirmed. Ultrasound imaging of pancreatic steatosis categorized the disease as mild, moderate and severe based on the characteristic texture. In conclusion, we observed on increase in metabolic syndrome, dyslipidemia, and arteriosclerosis, proportional to the degree of pancreatic fat deposition. The escalation of these diseases was confirmed and was directly related with predictors of cardiovascular diseases.

Swim Training Improves Fitness in High Fat Diet-fed Female Mice

  • Jun, Jong-Kui;Lee, Wang-Lok;Lee, Young-Ran;Jeong, Sun-Hyo
    • Biomedical Science Letters
    • /
    • v.16 no.3
    • /
    • pp.151-159
    • /
    • 2010
  • The peroxisome proliferator-activated receptor $\alpha$ (PPAR$\alpha$) is a nuclear transcription factor that plays a central role in lipid metabolism and obesity. Exercise also is a powerful modifier of the manifestations of the lipid metabolism and obesity in animal models and humans with obesity and metabolic syndrome. However, effects of exercise on lipid metabolism and obesity in normal-weight younger female subjects, having functional ovaries and not metabolic disease, remain unexplained. To explore the effects of exercise on the development of obesity and its molecular mechanism in high fat diet-fed female C57BL/6J mice, we experimented the effects of swim training on body weight, adipose tissue mass, serum lipid levels, morphological changes of adipocytes and the expression of PPAR$\alpha$ target genes involved in fat oxidation in skeletal muscle tissue of female C57BL/6J mice. Swim-trained mice had significantly decreased body weight, adipose tissue mass, serum triglycerides compared with female control mice. Histological studies showed that swim training significantly decreased the average size of adipoctyes in parametrial adipose tissue. Swim training did not affect the expression of PPAR$\alpha$ mRNA in skeletal muscle. Concomitantly, swim training did not increase mRNA levels of PPAR$\alpha$ target genes responsible for fatty acid $\beta$-oxidation, such as carnitine palmitoyltransferase 1, medium chain acyl-CoA dehydrogenase, enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase, and thiolase in skeletal muscle. In conclusion, these results indicate that swim training regulates lipid metabolism and obesity in high fat diet fed-female mice although swim training did not increase mRNA levels of PPAR$\alpha$ target genes involved in fatty acid $\beta$-oxidation in skeletal muscle, suggesting that swim training may prevent obesity and improve fitness through other mechanisms in female with ovaries, not through the activation of skeletal muscle PPAR$\alpha$.

Increased glucose metabolism and alpha-glucosidase inhibition in Cordyceps militaris water extract-treated HepG2 cells

  • Kim, Dae Jung;Kang, Yun Hwan;Kim, Kyoung Kon;Kim, Tae Woo;Park, Jae Bong;Choe, Myeon
    • Nutrition Research and Practice
    • /
    • v.11 no.3
    • /
    • pp.180-189
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Recent living condition improvements, changes in dietary habits, and reductions in physical activity are contributing to an increase in metabolic syndrome symptoms including diabetes and obesity. Through such societal developments, humankind is continuously exposed to metabolic diseases such as diabetes, and the number of the victims is increasing. This study investigated Cordyceps militaris water extract (CMW)-induced glucose uptake in HepG2 cells and the effect of CMW treatment on glucose metabolism. MATERIALS/METHODS: Colorimetric assay kits were used to determine the glucokinase (GK) and pyruvate dehydrogenase (PDH) activities, glucose uptake, and glycogen content. Either RT-PCR or western blot analysis was performed for quantitation of glucose transporter 2 (GLUT2), hepatocyte nuclear factor 1 alpha ($HNF-1{\alpha}$), phosphatidylinositol 3-kinase (PI3k), protein kinase B (Akt), phosphorylated AMP-activated protein kinase (pAMPK), phosphoenolpyruvate carboxykinase, GK, PDH, and glycogen synthase kinase 3 beta ($GSK-3{\beta}$) expression levels. The ${\alpha}-glucosidase$ inhibitory activities of acarbose and CMW were evaluated by absorbance measurement. RESULTS: CMW induced glucose uptake in HepG2 cells by increasing GLUT2 through $HNF-1{\alpha}$ expression stimulation. Glucose in the cells increased the CMW-induced phosphorylation of AMPK. In turn, glycolysis was stimulated, and glyconeogenesis was inhibited. Furthermore, by studying the mechanism of action of PI3k, Akt, and $GSK-3{\beta}$, and measuring glycogen content, the study confirmed that the glucose was stored in the liver as glycogen. Finally, CMW resulted in a higher level of ${\alpha}-glucosidase$ inhibitory activity than that from acarbose. CONCLUSION: CMW induced the uptake of glucose into HepG2 cells, as well, it induced metabolism of the absorbed glucose. It is concluded that CMW is a candidate or potential use in diabetes prevention and treatment.

Oxysterol 25-hydroxycholesterol as a metabolic pathophysiological factors of osteoarthritis induces apoptosis in primary rat chondrocytes

  • Seo, Yo-Seob;Cho, In-A;Kim, Tae-Hyeon;You, Jae-Seek;Oh, Ji-Su;Lee, Gyeong-Je;Kim, Do Kyung;Kim, Jae-Sung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.3
    • /
    • pp.249-257
    • /
    • 2020
  • The aim of the present study was to investigate the pathophysiological etiology of osteoarthritis that is mediated by the apoptosis of chondrocytes exposed to 25-hydroxycholesterol (25-HC), an oxysterol synthesized by the expression of cholesterol-25-hydroxylase (CH25H) under inflammatory conditions. Interleukin-1β induced the apoptosis of chondrocytes in a dose- dependent manner. Furthermore, the production of 25-HC increased in the chondrocytes treated with interleukin-1β through the expression of CH25H. 25-HC decreased the viability of chondrocytes. Chondrocytes with condensed nucleus and apoptotic populations increased by 25-HC. Moreover, the activity and expression of caspase-3 were increased by the death ligand-mediated extrinsic and mitochondria-dependent intrinsic apoptotic pathways in the chondrocytes treated with 25-HC. Finally, 25-HC induced not only caspase-dependent apoptosis, but also induced proteoglycan loss in articular cartilage ex vivo cultured rat knee joints. These data indicate that 25-HC may act as a metabolic pathophysiological factor in osteoarthritis that is mediated by progressive chondrocyte death in the articular cartilage with inflammatory condition.

Factors Influencing Insufficient Physical Activity in Older Cancer Patients: Using 2014 Survey of Living Condition of Elderly Study (노인 암 환자의 신체활동 부족 영향 요인: 2014 노인실태조사 자료 활용)

  • Kang, Hyunwook
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.12
    • /
    • pp.558-568
    • /
    • 2017
  • The purpose of this study was to identify the factors influencing insufficient physical activity in older cancer patients. Data were analyzed from the 2014 Survey of Living Condition of Elderly study. Metabolic Equivalent Tasks(MET) hours were calculated using self-reported weekly frequency, duration and types of physical activities to measure the degree of physical activity. Factors influencing insufficient physical activity in older adults included limitations in ADL and IADL, depression, impaired cognitive function, current smoker, lower levels of social activity participation and life satisfaction with social or leisure activities. When adjusted for demographic factors, patients with ADL limitation had 2.8 times (OR=2.762, CI=1.110, 7.952) higher risks of insufficient physical activities than those without. Current smokers had 2.4 times (OR=2.426, CI=1.113, 5.288) higher risks than non-smokers.

Reduction of Trimethylamine Off-Odor by Lactic Acid Bacteria Isolated from Korean Traditional Fermented Food and Their In Situ Application

  • Park, Seul-Ki;Jo, Du-Min;Yu, Daeung;Khan, Fazlurrahman;Lee, Yang Bong;Kim, Young-Mog
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1510-1515
    • /
    • 2020
  • Trimethylamine (TMA) is a well-known off-odor compound in fish and fishery products and is a metabolic product of trimethylamine N-oxide (TMAO) generated by the enzymatic action of microorganisms. The off-odor is a factor that can debase the value of fish and fishery products. The present study aimed to remove TMA using lactic acid bacteria (LAB). A total of fifteen isolates exhibiting the TMA reduction efficacy were isolated from Korean traditional fermented foods. Among these isolates, five LAB isolates (Lactobacillus plantarum SKD 1 and 4; Lactobacillus paraplantarum SKD 15; Pediococcus stilesii SKD 11; P. pentosaceus SKD 14) were selected based on their high TMA reduction efficacy. In situ reduction of TMA efficacy by the LAB cell-free supernatant was evaluated using a spoiled fish sample. The results showed effective TMA reduction by our selected strains: SKD1 (45%), SKD4 (62%), SKD11 (60%), SKD14 (59%), and SKD15 (52%), respectively. This is the first study on TMA reduction by the metabolic activity of LAB and in situ reduction of TMA using cell-free supernatant of LAB. The present finding suggests an economically useful and ecofriendly approach to the reduction of TMA.

Lifetime Physical Activity and Breast Cancer: a Case-Control Study in Kelantan, Malaysia

  • Yen, Siew Hwa;Knight, A;Krishna, MBV;Muda, WMW;Rufai, AA
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.8
    • /
    • pp.4083-4088
    • /
    • 2016
  • Background: Physical inactivity has been identified as the fourth leading risk factor for global mortality and is associated with increased breast cancer diagnosis and recurrence. Purpose: To examine the association between adult lifetime physical activity and breast cancer risk in a case-control analysis. Materials and Methods: This study involved 122 cases of breast cancer and 121 controls in the state of Kelantan in Malaysia. A comprehensive measure of lifetime physical activity was used to assess occupational, household, and recreational/sports activity. For every type of activity, a metabolic equivalent (MET) score was assigned using the compendium of physical activities. MET-hours/week per year for all types of activities at different levels of intensities for different age groups were calculated. Logistic regression analysis was used to estimate odds ratios between various measures of physical activity and breast cancer risk. Conclusions: The mean MET-hours/week per year for all activities were 120.0 and 132.9 of MET-hours/week per year for cases and controls respectively. Household activities accounted for about 70% of the total lifetime physical activities. Only about 2.5% of the total lifetime physical activities were in the form of recreational/sports. This study found no association between lifetime occupational and recreational/sports physical activities with breast cancer risk among Kelantanese women. However, higher intensity lifetime household activities seemed to significantly reduce risk of breast cancer.

In vitro and in vivo pharmacokinetic characterization of LMT-28 as a novel small molecular interleukin-6 inhibitor

  • Ahn, Sung-Hoon;Heo, Tae-Hwe;Jun, Hyun-Sik;Choi, Yongseok
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.4
    • /
    • pp.670-677
    • /
    • 2020
  • Objective: Interleukin-6 (IL-6) is a T cell-derived B cell stimulating factor which plays an important role in inflammatory diseases. In this study, the pharmacokinetic properties of LMT-28 including physicochemical property, in vitro liver microsomal stability and an in vivo pharmacokinetic study using BALB/c mice were characterized. Methods: LMT-28 has been synthesized and is being developed as a novel therapeutic IL-6 inhibitor. The physicochemical properties and in vitro pharmacokinetic profiles such as liver microsomal stability and Madin-Darby canine kidney (MDCK) cell permeability assay were examined. For in vivo pharmacokinetic studies, pharmacokinetic parameters using BALB/c mice were calculated. Results: The logarithm of the partition coefficient value (LogP; 3.65) and the apparent permeability coefficient values (Papp; 9.7×10-6 cm/s) showed that LMT-28 possesses a moderate-high cell permeability property across MDCK cell monolayers. The plasma protein binding rate of LMT-28 was 92.4% and mostly bound to serum albumin. The metabolic half-life (t1/2) values of LMT-28 were 15.3 min for rat and 21.9 min for human at the concentration 1 μM. The area under the plasma drug concentration-time curve and Cmax after oral administration (5 mg/kg) of LMT-28 were 302±209 h·ng/mL and 137±100 ng/mL, respectively. Conclusion: These data suggest that LMT-28 may have good physicochemical and pharmacokinetic properties and may be a novel oral drug candidate as the first synthetic IL-6 inhibitor to ameliorate mammalian inflammation.