• Title/Summary/Keyword: Metabolic control

Search Result 1,146, Processing Time 0.031 seconds

Inhibitory effects of Capsicum annuum L. water extracts on lipoprotein lipase activity in 3T3-L1 cells

  • Baek, Jongmi;Lee, Jaesung;Kim, Kyoungkon;Kim, Taewoo;Kim, Daejung;Kim, Cheonan;Tsutomu, Kanazawa;Ochir, Sarangowa;Lee, Kooyeon;Park, Cheol Ho;Lee, Yong-Jik;Choe, Myeon
    • Nutrition Research and Practice
    • /
    • v.7 no.2
    • /
    • pp.96-102
    • /
    • 2013
  • Obesity, an intractable metabolic disease, currently has no medical treatment without side effects, so studies have been actively carried out to find natural compounds that have anti-obesity activity with minimum side effects. In this study, the anti-obesity effects of water extracts of seven Capsicum annuum L. varieties being Putgochu (Pca), Oyee gochu (Oca), Kwari putgochu (Kca), Green pepper (Gca), Yellow paprika (Yca), Red paprika (Rca) and Cheongyang gochu (Cca), were examined through the evaluation of lipoprotein lipase (LPL) mRNA expression level in 3T3-L1 cells (mouse pre-adipocytes). After capsaicin elimination by chloroform defatting, freeze-dried powder of Cca was treated to 3T3-L1 cells and anti-obesity effects were examined by determining the LPL mRNA level using the RT-PCR method. Of the primary fractions, only proven fractions underwent secondary and tertiary refractionating to determine anti-obesity effects. From seven different Capsicum annuum L., there was a significant decrease of the LPL mRNA expression level of 50.9% in Cca treatment compared to the control group. A significant decrease of the LPL mRNA expression level was shown in primary fractions (Fr) 5 (36.2% decrease) and 6 (30.5% decrease) of the Cca water extracts. Due to the impurities checked by UPLC chromatography, Fr 5 and 6 were refractionated to determine the LPL mRNA expression level. Treatment of Fr 6-6 (35.8% decrease) and Fr 5-6 (35.3% decrease) showed a significant decrease in the LPL mRNA expression level. When analyzed using UPLC, major compounds of Fr 6-6 and Fr 5-6 were very similar. Subsequently, we refractionated Fr 6-6 and Fr 5-6 to isolate the major peak for structure elucidation. Treatment of Fr 5-6-1 (26.6% decrease) and Fr 6-6-1 (29.7% decrease) showed a significant decrease in the LPL mRNA expression level. Consequently, the fractions may have a possibility to ameliorate obesity through the decrease of the LPL mRNA expression level.

Effects of Aerobic Exercise on Serum Blood Lipids, Leptin, Ghrelin, and HOMA-IR Factors in Postmenopausal Obese Women (유산소 운동이 폐경 후 비만여성의 혈청지질, 렙틴, 그렐린 및 인슐린저항성지수에 미치는 영향)

  • Lee, Jeong-Ah;Kim, Ji-Hyeon;Kim, Jong-Won;Kim, Do-Yoen
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.549-558
    • /
    • 2017
  • The aim of this study was to analyze the effects of aerobic exercise on the blood lipids, leptin, ghrelin, and HOMA-IR factors in obese postmenopausal Korean women. Thirty-six healthy postmenopausal women (mean age, $54.47{\pm}2.50$ years) with >32 % body fat were assigned randomly to an aerobic exercise group (n = 18) or to a "no exercise" control group (n = 18). The subjects' body composition, blood lipid, leptin, ghrelin levels, and HOMA-IR were measured before and after a 16-week line-dancing program. The exercise group showed a significant decrease in body weight, percent body fat, body mass index, visceral fat area, leptin, insulin, glucose, HOMA-IR, total cholesterol, triglycerides, apolipoprotein B, low-density lipoprotein cholesterol, and systolic and diastolic blood pressure. In addition, this group exhibited a significant increase in the apolipoprotein A-I, ghrelin, and high-density lipoprotein cholesterol levels. The energy metabolic factors that influenced the visceral fat included ghrelin, leptin, insulin, glucose, and HOMA-IR. The t-value, which determined the statistical significance of the independent variables, was significant for ghrelin, glucose, insulin, and HOMA-IR (p < 0.05). Regular and continuous aerobic exercise (e.g., line dancing) effectively improved the body composition, visceral fat, serum blood lipids, leptin, ghrelin, and HOMA-IR factors in obese postmenopausal Korean women.

Bovine Growth Hormone and Milk Fat Synthesis: from the Body to the Molecule - Review -

  • Kim, W.Y.;Ha, J.K.;Han, In K.;Baldwin, R.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.4
    • /
    • pp.335-356
    • /
    • 1997
  • Injection of bovine growth hormone (bGH) to lactating dairy cows increases milk yield and yields of milk components including fat. It is generally believed that most of the anabolic effects derived from bGH in animal tissues are primarily mediated by IGF-1. IGF-1 is a strong anabolic peptide in the plasma of animals and exerts mitogenic and metabolic effects on target cells. Contrary to most protein hormones, the majority of IGF-1 in circulation is bound to the binding proteins (IGFBPs) which are known to be responsible for modifying the biological actions of IGF-1, thus making determinations of IGF-1 actions more difficult. On the other hand, fat is a major milk component and the greatest energy source in milk. Currently, the fat content of milk is one of the major criteria used in determining milk prices. It has been known that flavor and texture of dairy products are mainly affected by milk fat and its composition. Acetyl-CoA carboxylase (ACC) is the rate limiting enzyme which catalyzes the conversion of acetyl-CoA to malonyl-CoA for fatty acid synthesis in 1ipogenic tissues of animals including bovine lactating mammary glands. In addition to the short-tenn hormonal regulation of ACC by changes in the catalytic efficiency per enzyme molecule brought about by phosphorylation and dephosphorylation of the enzyme, the long-term hormonal regulation of ACC by changes in the number of enzyme molecules plays an essential role in control of ACC and lipogenesis. Insulin, at supraphysiological concentrations, binds to IGF-1 receptors, thereby mimicking the biological effects of IGF-1. The receptors for insulin and IGF-1 share structural and functional homology. Furthermore, epidermal growth factor increased ACC activity in rat hepatocytes and adipocytes. Therefore, it can be assumed that IGF-1 mediating bGH action may increase milk fat production by stimulation ACC with phosphorylation (short term) and/or increasing amounts of the enzyme proteins (long term). Consequently, the main purpose of this paper is to give the readers not only the galactopoietic effects of bGH, but also the insight of bGH action with regard to stimulating milk fat synthesis from the whole body to the molecular levels.

Mutagenecity evaluation of insecticidal 2-carbomethoxy-4-chlorodiethyl phosphate in short-term bioassays (살충성 물질 2-carbomethoxy-4-chlorodiethyl phosphate의 유전독성 평가)

  • Lee, Je-Bong;Sung, Ha-Jung;Jeong, Mi-Hye;Kwon, Oh-Kyung;Lee, Hae-Keun;Kim, Young-Koo
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.2
    • /
    • pp.53-58
    • /
    • 1998
  • For evaluating the mutagenic potential of 2-carbomethoxy-4-chlorodiethyl phosphate, three different short-term mutagenicity tests were used; Salmonella typhimurium preincubation assay with and without rat liver microsomal activation, chromosome aberration test in cultured chinese hamster lung fibroblast cell and in vivo micronucleus test in male mice bone marrow. In Salmonella typhimurium reverse mutation assay using TA98, TA100, TAl535 and TAl537, 2-carbomethoxy-4-chlorodiethyl phosphate did not show any mutagenic response in the presence and absence of S9 mix. It did not induce any significant structural chromosome aberrations in the absence of metabolic activation. In micronucleus test using ICR mice, the frequency of micronucleated polychromatic erythrocytes (MNPCE) increased in bone marrow cells treated with positive control, mitomycin-C, but 2-carbomethoxy-4-chlorodiethyl phosphate did not increase micronucleated polychromatic erythrocytes. These results indicate that 2-carbomethoxy-4-chlorodiethyl phosphate does not show any positive responses in short-term genotoxicity assays.

  • PDF

Methane Mitigation Technology Using Methanotrophs: A Review (Methanotrophs을 이용한 메탄 저감 기술 최신 동향)

  • Cho, Kyung-Suk;Jung, Hyekyeng
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.3
    • /
    • pp.185-199
    • /
    • 2017
  • Methane, which is emitted from natural and anthropogenic sources, is a representative greenhouse gas for global warming. Methanotrophs are widespread in the environment and play an important role in the biological oxidation of methane via methane monooxygenases (MMOs), key enzymes for methane oxidation with broad substrate specificity. Methanotrophs have attracted attention as multifunctional bacteria with promising applications in biological methane mitigation technology and environmental bioremediation. In this review, we have summarized current knowledge regarding the biodiversity of methanotrophs, catalytic properties of MMOs, and high-cell density cultivation technology. In addition, we have reviewed the recent advances in biological methane mitigation technologies using methanotrophs in field-scale systems as well as in lab-scale bioreactors. We have also surveyed information on the dynamics of the methanotrophic community in biological systems and discussed the various challenges pertaining to methanotroph-related biotechnological innovation, such as identification of suitable methanotrophic strains with better and/or novel metabolic activity, development of high-cell density mass cultivation technology, and the microbial consortium (methanotrophs and non-methanotrophs consortium) design and control technology.

The Effects of A High-Fat Diet on Pro- and Macro-Glycogen Accumulation and Mobilization During Exercise in Different Muscle Fiber Types and Tissues in Rats

  • Lee Jong-Sam;Eo Su-Ju;Cho In-Ho;Pyo Jae-Hwan;Kim Hyo-Sik;Lee Jang-Kyu;Kwon Young-Woo;Kim Chang-Keun
    • Nutritional Sciences
    • /
    • v.8 no.3
    • /
    • pp.181-188
    • /
    • 2005
  • We investigated the effects of diet manipulation on pro- and macro-glycogen accumulation and mobilization during exercise in different kinds of muscle fiber and tissue. Thirty-two Sprague-Dawley rats were divided into groups representing one of two dietary conditions: high fat (HF, n=16) or standard chow (CHOW, n=16). Each dietary group was fm1her divided into control (REST, n=8) and exercise (EXE, n=8). After an eight-week dietary intervention period, the animals in EXE swam for 3 hours while the animals in REST remained at rest Skeletal muscle (soleus, red gastrocnemius and white gastrocnemius) and liver samples were then dissected out and used for analyses. 1here was no statistical difference in body weight between the animals in the HF and mow groups (p>.05). Three hours of exercise significantly increased plasma free fatty acid (FFA) concentration in the animals in the CHOW group but not in the animals in the HF group. Both citrate. synthase (CS) and $\beta$-hydroxyacyl dehydrogenase ($\beta$-HAD) activities in skeletal muscles were higher in the HF group than in the mow group. CS and $\beta$-HAD activities were also the highest in red gastrocnemius and the lowest in white gastrocnemius. At both time points (i.e., rest and immediately after exercise) intramuscular triglyceride (IMTG) and liver TG concentrations were significantly higher in the HF compared to the CHOW. IMTG and liver TG changed selectively in the CHOW. Except in white gastrocnemius muscle, there was no significant difference in total glycogen content between HF and mow at rest. Although exercise significantly lowered total glycogen content in all groups and tissues (p<.05), the degree of reduction was markedly greater in the mow than in the HF. Whereas changes in proglycogen concentration showed a trend similar to those of total glycogen, alterations in macroglycogen concentrations clearly differed from those of total glycogen. Specifically, the degree of reduction of macroglycogen following three hours of exercise was substantially greater in the CHOW than in the HF. These results suggest that metabolic alterations induced by a long-term high fat diet may be caused by macro-glycogen rather than pro-glycogen.

Effects of Elastic Band Resistance Training on Body Composition, Arterial Compliance and Risks of Falling Index in Elderly Females (탄성밴드 저항운동이 고령여성의 신체조성, 혈관탄성 및 낙상위험도지수에 미치는 영향)

  • Park, Hyeok;Kim, Dayeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.199-208
    • /
    • 2017
  • Both cardiovascular diseases caused by decreased body composition and arterial compliance and falling induced by loss of muscle mass are frequent occurrences in the elderly. Therefore, elderly people are advised to perform elastic band resistance exercises to improve their body composition and arterial compliance. Thus, the purpose of this study was to examine the effects of 12 weeks of elastic band resistance training on the body composition, arterial compliance and falling index in elderly females (> 65 years). The elastic band resistance exercise program was administered 3 times per week for 60 minutes each time for 12 weeks. In addition, the exercise intensity was set to 11-14 on the Borg scale (6-20). Before and after the training period, the body composition (body weight (BW), muscle mass, % body fat, body mass index (BMI)), arterial compliance (ankle brachial index (ABI) and pulse wave velocity (PWV)) and risk of falling index were determined. (After the program?), the BW (p=.003), BMI (p=.002), PWV (p=.017) and risk of falling (p=.037) in the exercise group were significantly reduced, whereas the BW (p=.009) and BMI (p=.009) in the control group were significantly increased. In conclusion, the body weight, BMI and arterial compliance of elderly females were positively changed by the elastic band resistance training. Thus, the elastic band resistance exercise may be useful for elderly people to prevent metabolic syndrome and cardiovascular diseases and to reduce their risk of falling.

$PPAR{\gamma}$ Inhibits Inflammation through the Suppression of ERK1/2 Kinase Activity in Human Gingival Fibroblasts

  • Lee, Young-Hee;Kwak, Dong-Hoon;Kang, Min-Soo;Bhattarai, Govinda;Lee, Nan-Hee;Jhee, Eun-Chung;Yi, Ho-Keun
    • International Journal of Oral Biology
    • /
    • v.35 no.1
    • /
    • pp.27-33
    • /
    • 2010
  • Periodontal disease is a major oral disorder and comprises a group of infections that lead to inflammation of the gingiva and the destruction of periodontal tissues. $PPAR{\gamma}$ plays an important role in the regulation of several metabolic pathways and has recently been implicated in inflammatory response pathways. However, its effects on periodontal inflammation have yet to be clarified. In our current study, we evaluated the anti-inflammatory effects of $PPAR{\gamma}$ on periodontal disease. Human gingival fibroblasts (HGFs) treated with lipopolysaccharide (LPS) showed high levels of intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), matrix metalloproteinase-2 (MMP-2), and -9 (MMP-9). Moreover, these cells also showed upregulated activities for extracellular signal regulated kinase (ERK1/2), inducible nitric oxide synthase (iNOS) and cyclooxygnase-2. However, cells treated with Ad/$PPAR{\gamma}$ and rosiglitazone in same culture system showed reduced ICAM-1, VCAM-1, MMP-2, -9 and COX-2. Finally, the anti-inflammatory effects of $PPAR{\gamma}$ appear to be mediated via the suppression of the ERK1/2 pathway and consequent inhibition of NF-kB translocation. Our present findings thus suggest that $PPAR{\gamma}$ indeed has a pivotal role in gingival inflammation and may be a putative molecular target for future therapeutic strategies to control chronic periodontal disease.

Anaerobic Bacterial Degradation for the Effective Utilization of Biomass

  • Ohmiya, Kunio;Sakka, Kazuo;Kimura, Tetsuya
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.482-493
    • /
    • 2005
  • Biomass is originally photosynthesized from inorgainic compounds such as $CO_2$, minerals, water and solar energy. Recent studies have shown that anaerobic bacteria have the ability to convert recalcitrant biomass such as cellullosic or chitinoic materials to useful compounds. The biomass containing agricultural waste, unutilized wood and other garbage is expected to utilize as feed, food and fuel by microbial degradation and other metabolic functions. In this study we isolated several anaerobic, cellulolytic and chitinolytic bacteria from rumen fluid, compost and soil to study their related enzymes and genes. The anaerobic and cellulolytic bacteria, Clostridium thermocellum, Clostridium stercorarium, and Clostridium josui, were isolated from compost and the chitinolytic Clostridium paraputrificum from beach soil and Ruminococcus albus was isolated from cow rumen. After isolation, novel cellulase and xylanase genes from these anaerobes were cloned and expressed in Escherichia coli. The properties of the cloned enzymes showed that some of them were the components of the enzyme (cellulase) complex, i.e., cellulosome, which is known to form complexes by binding cohesin domains on the cellulase integrating protein (Cip: or core protein) and dockerin domains on the enzymes. Several dockerin and cohesin polypeptides were independently produced by E. coli and their binding properties were specified with BIAcore by measuring surface plasmon resonance. Three pairs of cohesin-dockerin with differing binding specificities were selected. Two of their genes encoding their respective cohesin polypeptides were combined to one gene and expressed in E. coli as a chimeric core protein, on which two dockerin-dehydrogenase chimeras, the dockerin-formaldehyde dehydrogenase and the dockerin-NADH dehydrogenase are planning to bind for catalyzing $CO_2$ reduction to formic acid by feeding NADH. This reaction may represent a novel strategy for the reduction of the green house gases. Enzymes from the anaerobes were also expressed in tobacco and rice plants. The activity of a xylanase from C. stercorarium was detected in leaves, stems, and rice grain under the control of CaMV35S promoter. The digestibility of transgenic rice leaves in goat rumen was slightly accelerated. C. paraputrificum was found to solubilize shrimp shells and chitin to generate hydrogen gas. Hydrogen productivity (1.7 mol $H_2/mol$ glucos) of the organism was improved up to 1.8 times by additional expression of the own hydrogenase gene in C. paraputrficum using a modified vector of Clostridiu, perfringens. The hydrygen producing microflora from soil, garbage and dried pelletted garbage, known as refuse derived fuel(RDF), were also found to be effective in converting biomass waste to hydrogen gas.

LESCH-NYHAN SYNDROME: A CASE REPORT (Lesch-Nyhan syndrome: 증례보고)

  • Kim, Myoung-Gook;Yang, Kyu-Ho;Choi, Nam-Ki;Kim, Seon-Mi
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.38 no.3
    • /
    • pp.284-289
    • /
    • 2011
  • Lesch-Nyhan syndrome is a disease caused by metabolic disorder of purine. General muscle stiffness and hyposomia are shown from infancy and symptoms can include involuntary or irregular movements of arms and legs, mental retardation, and compulsive self-mutilating behaviors. Self-mutilating behaviors begin at approximately the first year or sometimes at late teens. The patients bite their lips, especially lower lip, tongue, buccal mucosa, hands and fingers. Tongue and lips can be injured or mutilated in severe cases. As the patient gets older, self-mutilating behaviors become more serious and extensive and secondary infection of injured areas is possible. Periodic soft tissue damage due to self-mutilating may evolve to cancer. Medical treatment, appliance treatment, extraction of tooth and surgical operation was attempted to control self-mutilaing behaviors. We hereby report the case of child Lesch-Nyhan syndrome patient who has self-inflicted labial damage as chief complaint. When patient was treated with conservate therapy, such as removable or fixed appliance, the frequency of labial damage could be subdued and yielded favorable results.