• Title/Summary/Keyword: Metabolic Products

Search Result 340, Processing Time 0.03 seconds

Prospects for Plant Biotechnology and Bioindustry in the 21st Century: Paradigm Shift Driven by Genomics (21세기 식물생명공학과 생물산업의 전망: 유전체 연구에 의한 Paradigm Shift)

  • Liu, Jang-Ryol;Choi, Dong-Woog;Chung, Hwa-Jee
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2002.04b
    • /
    • pp.19-25
    • /
    • 2002
  • Biotechnology in the 21st century will be driven by three emerging technologies: genomics, high-throughput biology, and bioinformatics. These technologies are complementary to one another. A large number of economically important crops are currently subjected to whole genome sequencing. Functional genomics for determining the functions of the genes comprising the given plant genome is under progress by using various means including phenotyping data from transgenic mutants, gene expression profiling data from DNA microarrays, and metabolic profiling data from LC/mass analysis. The aim of plant molecular breeding is shifting from introducing agronomic traits such as herbicide and insect resistance to introducing quality traits such as healthful oils and proteins, which will lead to improved and nutritional food and feed products. Plant molecular breeding is also expected to aim to develop crops for producing human therapeutic and industrial proteins.

  • PDF

Changes of Enzyme Activity in Nitrogen Metabolism on Induced Association of N. muscorum with Cultured Tobacco Cells (N. muscorum과 담배 배양세포의 공생유도에 따른 질소대사에 관여하는 효소활성의 변화)

  • 정현숙
    • KSBB Journal
    • /
    • v.5 no.2
    • /
    • pp.151-158
    • /
    • 1990
  • Investigations on the liability of nitrogen usuage by Nostoc muscorum that has nitrogen fixing ability, and cultured tobacco cells as they were associately cultured on nitrogen-free media and effects of polyamine on the associated culture condition were carried out. In addition, measurement on the activity of nitrate reductase, glutamine synthetase, glutamate dehydrogenase and glutamate synthase that take part in the metabolic pathway of nitrogen fixation product were performed. Among enzymes participating in the metabolic pathway of nitrogen fixation products, the activity of nitrogen reductase stimulated five times in associated culture, and that of glutamine synthetase of N. muscorum increased two times after heterocyst differentiated. Activity of glutamate dehydrogenase increased markedly when cultured tobacco cells were solely incubated on nitrogen-free media, but inhibited when cultured associately. And, glutamate synthase was showed the highest activity in 0.1 mM of spermine treated group.

  • PDF

Prospects for Plant Biotechnology and Bioindustry in the 21s1 Century: Paradigm Shift Driven by Genomics (21세기 식물생명공학과 생물산업의 전망 : 유전체 연구에 의한 Paradigm Shift)

  • Liu, Jang-Ryol;Choi, Dong-Woog;Chung, Hwa-Jee
    • Journal of Plant Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.145-150
    • /
    • 2002
  • Biotechnology in the 21st century will be driven by three emerging technologies: genomics, high-throughput biology, and bioinformatics. These technologies are complementary to one another. A large number of economically important crops are currently subjected to whole genome sequencing. Functional genomics for determining the functions of the genes comprising the given plant genome is under progress by using various means including phenotyping data from transgenic mutants, gene expression profiling data from DNA microarrays, and metabolic profiling data from LC/mass analysis. The aim of plant molecular breeding is shifting from introducing agronomic traits such as herbicide and insect resistance to introducing quality traits such as healthful oils and proteins, which will lead to improved and nutritional food and feed products. Plant molecular breeding is also expected to aim to develop crops for producing human therapeutic and industrial proteins.

Tschimganidine reduces lipid accumulation through AMPK activation and alleviates high-fat diet-induced metabolic diseases

  • Min-Seon Hwang;Jung-Hwan Baek;Jun-Kyu Song;In Hye Lee;Kyung-Hee Chun
    • BMB Reports
    • /
    • v.56 no.4
    • /
    • pp.246-251
    • /
    • 2023
  • Obesity increases the risk of mortality and morbidity because it results in hypertension, heart disease, and type 2 diabetes. Therefore, there is an urgent need for pharmacotherapeutic drugs to treat obesity. We performed a screening assay using natural products with anti-adipogenic properties in 3T3-L1 cells and determined that tschimganidine, a terpenoid from the Umbelliferae family, inhibited adipogenesis. To evaluate the anti-obesity effects of tschimganidine in vivo. Mice were fed either a normal chow diet (NFD) or a high-fat chow diet (HFD) with or without tschimganidine for 12 weeks. Treatment with tschimganidine decreased lipid accumulation and adipogenesis, accompanied by reduced expression of adipogenesis and lipid accumulation-related factors. Tschimganidine significantly increased the phosphorylation of AMP-activated protein kinase (AMPK) and decreased that of AKT. Depletion of AMPK relieved the reduction in lipid accumulation resulting from tschimganidine treatment. Moreover, tschimganidine administration drastically reduced the weight and size of both gonadal white adipose tissue (WAT) and blood glucose levels in high-fat diet-induced obese mice. We suggest that tschimganidine is a potent anti-obesity agent, which impedes adipogenesis and improves glucose homeostasis. Tschimganidine can then be evaluated for clinical application as a therapeutic agent.

Review for Selenium Metabolism and Its Bioavailability in the Animal (셀레늄의 동물체내 대사 및 이용에 관한 고찰)

  • Kim, Wan-Young;Nho, Whan-Gook
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.6 no.1
    • /
    • pp.90-101
    • /
    • 2004
  • Se is essential for a number of enzymes that perform important metabolic functions necessary for good health. However, people in many countries do not appear to consume adequate amounts of Se to support the maximal expression of the selenoproteins and Se retention in the body of animals and humans is dependent on the ingested Se source such as organic and inorganic Se. Therefore, this review was discussed to explore metabolic characterization regarding intestinal absorption, bioavailability and selenoprotein synthesis according to animal species such as monogastrics including human beings and ruminants. Generally, organic Se provided to animals is more effective than inorganic Se in body retention for the animal owing to the difference of manner for intestinal absorption. But, Se absorption in ruminants depending on its chemical form still remained questioned by several microbial actions and feeding regimen in the rumen. And Se absorbed through small intestine is utilized for the synthesis of selenoproteins and/or retained as selenoamino acids in the body. Retained Se in the body may be recycled to synthesize selenoproteins as lacked of dietary Se. In conclusion, desirable forms of Se ingestion in the animal may be useful for Se fortification in animal products as well as well being for humans and animals.

- Invited Review - Hydrogen production and hydrogen utilization in the rumen: key to mitigating enteric methane production

  • Roderick I. Mackie;Hyewon Kim;Na Kyung Kim;Isaac Cann
    • Animal Bioscience
    • /
    • v.37 no.2_spc
    • /
    • pp.323-336
    • /
    • 2024
  • Molecular hydrogen (H2) and formate (HCOO-) are metabolic end products of many primary fermenters in the rumen ecosystem. Both play a vital role in fermentation where they are electron sinks for individual microbes in an anaerobic environment that lacks external electron acceptors. If H2 and/or formate accumulate within the rumen, the ability of primary fermenters to regenerate electron carriers may be inhibited and microbial metabolism and growth disrupted. Consequently, H2- and/or formate-consuming microbes such as methanogens and possibly homoacetogens play a key role in maintaining the metabolic efficiency of primary fermenters. There is increasing interest in identifying approaches to manipulate the rumen ecosystem for the benefit of the host and the environment. As H2 and formate are important mediators of interspecies interactions, an understanding of their production and utilization could be a significant starting point for the development of successful interventions aimed at redirecting electron flow and reducing methane emissions. We conclude by discussing in brief ruminant methane mitigation approaches as a model to help understand the fate of H2 and formate in the rumen ecosystem.

DNA Single Strand Breaks of Perchloroethylene and Its Bio-degradation Products by Single Cell Gel Electrophoresis Assay in Mammalian Cell System

  • Jeon, Hee-Kyoung;Kim, Young-Seok;Sarma, Sailendra Nlath;Kim, Youn-Jung;Sang, Byoung-In;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.2
    • /
    • pp.99-105
    • /
    • 2005
  • Perchloroethylene (tetrachloroethylene, PCE), a dry cleaning and degreasing solvent, can enter ground-water through accidental leak or spills. PCE can be degraded to trichloroethylene (TCE), 1, 1-dichloroethylene (DCE) and vinyl chloride (VC) as potential bio-product. These compounds have been reported that they can cause clinical diseases and cytotoxicity. However, only a little genotoxic information of these compounds has been known. In this study, we investigated DNA single strand breaks of PCE, TCE, DCE and VC by single cell gel electrophoresis assay, (comet assay) which is a sensitive, reliable and rapid method for DNA single strand breaks with mouse lymphoma L5178Y cells. From these results, $37.5\;{\mu}g/ml$ of PCE, $189\;{\mu}g/ml$ of TCE and $56.4\;{\mu}g/ml$ of DCE were revealed significant DNA damages in the absence of S-9 metabolic activation system meaning direct-acting mutagen. And in the presence of S-9 metabolic activation system, $41.5\;{\mu}g/ml$ of PCE, $328.7\;{\mu}g/ml$ of TCE and $949\;{\mu}g/ml$ of DCE were induced significant DNA damage. In the case of VC, it was revealed a significant DNA damage in the presence of S-9 metabolic activation system. Therefore, we suggest that chloroethylene compounds (PCE, TCE, DCE and VC) may be induced the DNA damage in a mammalian cell.

Quantitative and Qualitative Assessment of Dietary Intake in Metabolic Syndrome Patients (대사증후군 환자의 양적 및 질적 식사섭취상태 평가)

  • Kang, Myung-Hwa;Choi, Mi-Kyeong
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.4
    • /
    • pp.456-464
    • /
    • 2016
  • The purpose of this study was to compare the quantitative and qualitative assessment of dietary intake between patients with metabolic syndrome (MetS) and healthy subjects and to investigate dietary factors related to MetS. Anthropometric measurements, blood analysis, and dietary intake as assessed by 24-hour recall were conducted in MetS patients (n=15) and healthy subjects (n=25). In order to assess the quantity and quality of dietary intake, daily nutrient intake, nutrient density, nutrient intake to dietary reference intake (DRI), nutrient adequacy ratio (NAR), food intake, dietary diversity score (DDS), and dietary variety score (DVS) were analyzed. The statistical differences between MetS patients and controls were analyzed using the SAS software program. Daily energy intake and food intake were not significantly different between the two groups (2,154.3 kcal vs. 1,872.9 kcal; 1,280.0 g vs. 1,261.6 g). There were also no significant differences in daily nutrient intake, nutrient intake ratio to DRI, NAR, or DVS between the MetS group and the control group. However, daily intake of eggs and milk in MetS patients was significantly lower than in the control group (9.0 g/day vs. 30.3 g/day, p<0.05; 0 g/day vs. 49.7 g/day, p<0.05). These results indicate that low intake of eggs and dairy products may be related to the development of MetS.

UPLC-Q-TOF-MS/MS Analysis for Steaming Times-dependent Profiling of Steamed Panax quinquefolius and Its Ginsenosides Transformations Induced by Repetitious Steaming

  • Sun, Bai-Shen;Xu, Ming-Yang;Li, Zheng;Wang, Yi-Bo;Sung, Chang-Keun
    • Journal of Ginseng Research
    • /
    • v.36 no.3
    • /
    • pp.277-290
    • /
    • 2012
  • The metabolic profiles of Panax quinquefolius and its associated therapeutic values are critically affected by the repetitious steaming times. The times-dependent steaming effect of P. quinquefolius is not well-characterized and there is also no official guideline on its times of steaming. In this paper, a UPLC-Q-TOF-MS/MS method was developed for the qualitative profiling of multi-parametric metabolic changes of raw P. quinquefolius during the repetitious steaming process. Our method was successful in discriminating the differentially multi-steamed herbs. Meantime, the repetitious steaming-inducing chemical transformations in the preparation of black American ginseng (American ginseng that was subjected to 9 cycles of steaming treatment) were evaluated by this UPLC-Q-TOF-MS/MS based chemical profiling method. Under the optimized UPLC-Q-TOF-MS/MS conditions, 29 major ginsenosides were unambiguously identified and/or tentatively assigned in both raw and multi-steamed P. quinquefolius within 19 min, among them 18 ginsenosides were detected to be newly generated during the preparatory process of black American ginseng. The mechanisms involved were further deduced to be hydrolysis, dehydration, decarboxylation and addition reactions of the original ginsenosides in raw P. quinquefolius through analyzing mimic 9 cycles of steaming extracts of 14 pure reference ginsenosides. Our novel steaming times-dependent metabolic profiling approach represents the paradigm shift in the global quality control of multi-steamed P. quinquefolius products.

Vitellogenin Induction and Histo-metabolic Changes Following Exposure of Cyprinus carpio to Methyl Paraben

  • Barse, A.V.;Chakrabarti, T.;Ghosh, T.K.;Pal, A.K.;Kumar, Neeraj;Raman, R.P.;Jadhao, S.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.12
    • /
    • pp.1557-1565
    • /
    • 2010
  • Methyl paraben (MP), which is used as a preservative in pharmaceutical and cosmetic (shampoo) products, foods and beverages, enters into the aquatic environment and can pose a potential fish health hazard. In this experiment, effects of MP were evaluated in adult male common carp (Cyprinus carpio) by exposing them to fractions (1/$143^{rd}$ to 1/29th) of the $LC_{50}$ dose with every change of water for 28 days. Vitellogenin induction, metabolic enzymes, somatic indices and bioaccumulation were studied at weekly intervals. The $96^{th}$ h $LC_{50}$ of MP in fingerlings was 120 mg/L. Compared to the control, except for increases (p<0.01) in alkaline phosphatase (EC 3.1.3.1), alanine aminotransferase (EC 2.6.1.2) and liver size, there were decreases (p<0.01) in activity of acid phosphatase (EC 3.1.3.2), aspartate aminotransferase (EC 2.6.1.1), and testiculosomatic index following exposure to any dose of MP. Vitellogenin induction was significantly higher (p<0.01) in exposed than unexposed (control) fish. The bioaccumulation of MP in testis, liver, brain, gills and muscle tissues of fish increased significantly (p<0.01) with increase of dose from 0.84 ppm to 1.68 ppm. Dose and duration of exposure (p<0.01) indicated that an exposure period of 1 to 2 weeks was sufficient to cause changes in the quantifiable parameters studied. Fish exposed to 4.2 ppm MP became lethargic after the $26^{th}$ d. Histologically, degeneration, vacuolization and focal necrotic changes in liver and fibrosis-like changes in testicular tissue were noted.