• Title/Summary/Keyword: Metabolic Bone Disease

Search Result 88, Processing Time 0.02 seconds

Inhibition of Osteoclast Differentiation and Promotion of Osteogenic Formation by Wolfiporia extensa Mycelium

  • Tae Hyun Son;Shin-Hye Kim;Hye-Lim Shin;Dongsoo Kim;Jin-Sung Huh;Rhim Ryoo;Yongseok Choi;Sik-Won Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1197-1205
    • /
    • 2023
  • Osteoporosis, Greek for "porous bone," is a bone disease characterized by a decrease in bone strength, microarchitectural changes in the bone tissues, and an increased risk of fracture. An imbalance of bone resorption and bone formation may lead to chronic metabolic diseases such as osteoporosis. Wolfiporia extensa, known as "Bokryung" in Korea, is a fungus belonging to the family Polyporaceae and has been used as a therapeutic food against various diseases. Medicinal mushrooms, mycelium and fungi, possess approximately 130 medicinal functions, including antitumor, immunomodulating, antibacterial, hepatoprotective, and antidiabetic effects, and are therefore used to improve human health. In this study, we used osteoclast and osteoblast cell cultures treated with Wolfiporia extensa mycelium water extract (WEMWE) and investigated the effect of the fungus on bone homeostasis. Subsequently, we assessed its capacity to modulate both osteoblast and osteoclast differentiation by performing osteogenic and anti-osteoclastogenic activity assays. We observed that WEMWE increased BMP-2-stimulated osteogenesis by inducing Smad-Runx2 signal pathway axis. In addition, we found that WEMWE decreased RANKL-induced osteoclastogenesis by blocking c-Fos/NFATc1 via the inhibition of ERK and JNK phosphorylation. Our results show that WEMWE can prevent and treat bone metabolic diseases, including osteoporosis, by a biphasic activity that sustains bone homeostasis. Therefore, we suggest that WEMWE can be used as a preventive and therapeutic drug.

Porphyromonas gingivalis exacerbates the progression of fatty liver disease via CD36-PPARγ pathway

  • Ahn, Ji-Su;Yang, Ji Won;Oh, Su-Jeong;Shin, Ye Young;Kang, Min-Jung;Park, Hae Ryoun;Seo, Yoojin;Kim, Hyung-Sik
    • BMB Reports
    • /
    • v.54 no.6
    • /
    • pp.323-328
    • /
    • 2021
  • Periodontal diseases have been reported to have a multidirectional association with metabolic disorders. We sought to investigate the correlation between periodontitis and diabetes or fatty liver disease using HFD-fed obese mice inoculated with P. gingivalis. Body weight, alveolar bone loss, serological biochemistry, and glucose level were determined to evaluate the pathophysiology of periodontitis and diabetes. For the evaluation of fatty liver disease, hepatic nonalcoholic steatohepatitis (NASH) was assessed by scoring steatosis, inflammation, hepatocyte ballooning and the crucial signaling pathways involved in liver metabolism were analyzed. The C-reactive protein (CRP) level and NASH score in P. gingivalis-infected obese mice were significantly elevated. Particularly, the extensive lobular inflammation was observed in the liver of obese mice infected with P. gingivalis. Moreover, the expression of metabolic regulatory factors, including peroxisome proliferator-activated receptor γ (Pparγ) and the fatty acid transporter Cd36, was up-regulated in the liver of P. gingivalis-infected obese mice. However, inoculation of P. gingivalis had no significant influence on glucose homeostasis, insulin resistance, and hepatic mTOR/AMPK signaling. In conclusion, our results indicate that P. gingivalis can induce the progression of fatty liver disease in HFD-fed mice through the upregulation of CD36-PPARγ axis.

Osteosarcopenic Obesity in Elderly: The Cascade of Bone, Muscle, and Fat in Inflammatory Process

  • Du, Yang;Oh, Chorong;No, Jae-kyung
    • Culinary science and hospitality research
    • /
    • v.23 no.6
    • /
    • pp.173-183
    • /
    • 2017
  • Conditions related to body composition and aging, such as osteopenic obesity, sarcopenia/ sarcopenic obesity, and the newly termed osteosarcopenic obesity(triad of bone, muscle and adipose tissue impairment), are beginning to gain recognition. Currently, it has begun to attract the attention of scholars from all over the world, however, for this disease, it still needs a more clear understanding and perception. Therefore, this article considered the osteoporosis, muscle depression, and obesity, these diseases as a gate to study the relationship among muscle, bone, and fat. In addition, in the aging process, the formation of IGF-cortisol, testosterone, and estrogen is sensitive. These hormones can not only absorb muscle protein metabolism, but also affect alienation. The decrease in IGF-cortisol in the elderly resulted in increased visceral fat, decreased muscle mass and bone mineral density, and then affected decreased skeletal muscle atrophy and decreased quality. The reduction of skeletal muscle quality and strength and increase body fat affected the adipose tissue to produce inflammatory cytokines, thereby reduced skeletal muscle, promoted cardiovascular disease, metabolic syndrome and insulin resistance in chronic diseases. Almost all chronic inflammatory diseases were associated with bone, muscle and fat. These mechanisms were complex and interrelated. Inflammation reduces bone formation, increases fat and reduces muscle mass. And thus not only had a significant impact on the motor system, but also made the incidence increase of fracture, osteoporosis, fragile syndrome, fall, osteomalacia and other bone disease. This article aimed to start from the interaction between the muscles and bones of the elderly, extended to obesity, muscle deficiency, osteoporosis and other diseases, finally, from a nutritional point of view, to discuss how to treat osteoporosis obesity.

A Case of a 2-year-old Girl with Type I Gaucher Disease Presenting with Growth Retardation and Leg Pain (2세 여아에서 성장 부진과 다리 통증을 동반한 1형 고셔병 증례)

  • Park, Yesul;Hwang, Jae-Yeon;Hwang, Eun Ha;Cheon, Chong Kun;Lee, Beom Hee;Yoo, Han-Wook;Kim, Yoo-Mi
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.17 no.2
    • /
    • pp.63-68
    • /
    • 2017
  • Gaucher disease (GD) is caused by the deficiency of glucocerebrosidase. In pediatric patients with GD, especially Type I GD, enzyme replacement therapy (ERT) can reduce the hepatosplenomegaly and improve the hematologic finding and growth velocity. Herein, we report a 2-year-old girl with Type I GD presented with hepatosplenomegaly, bone pain and growth retardation. A 2 year-old-girl was referred to our hospital due to severe hepatosplenomegaly and growth retardation. She suffered from both leg pain and chronic fatigue. Simple x-ray showed widened distal long bones like that of an 'Erlenmeyer flask' which is associated with GD. The laboratory test showed anemia and thrombocytopenia. The enzyme activity was markedly reduced and the direct sequencing of the GBA gene showed the compound heterozygous mutations, p.G46E and p.L444P. As the G46E have been considered as the protective gene against neuronopathic genotype, we could assess the Type I GD in this patient. After one year of ERT, the growth velocity became 11 cm per year. Bone pain and fatigue disappeared. The volume of liver and spleen was reduced from $683cm^3$ and $703cm^3$ to $590cm^3$ and $235cm^3$, respectively. Although GD is an extremely rare disease in Korea, growth retardation and bone pain in children are the important signs which lead to early detection of GD and a simple radiologic finding is helpful to assess the GD at outpatient clinic. We highlight that the early diagnosis and early ERT is important for good growth and outcome for pediatric patients with GD.

  • PDF

The Pitfalls Medical Radiological Technologists should Consider in Bone Densitometry (DXA 골밀도 검사에서 방사선사가 인식하고 있어야 할 Pitfall)

  • Ho-Sung Kim
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.27 no.1
    • /
    • pp.11-22
    • /
    • 2023
  • Bone densitometry is a disease in which bones are easily broken due to metabolic bone disease, and DXA is used as a clinical standard test. Although DXA is a good method with good accuracy and reproducibility, it is frequently subject to test errors in testing and result analysis and analysis. Therefore, it is important to recognize the error issues that radiologists should basically be aware of when performing bone density tests, prevent erroneous diagnoses and treatments resulting from the results, and reduce the unnecessary costs associated with them. aim. The inspection must be carried out if the quality control of the equipment is basically continuously performed well before the inspection. Before starting the examination, the patient's age, sex, race, weight, pregnancy status, and any foreign objects that can be removed should be checked, and the examination should be performed in the correct posture. In addition, it is important to analyze results consistently. Radiologists, who play the most important role in ensuring accurate examinations, need to be aware of the potential for errors in advance and develop the ability to deal with the potential for errors in each examination. For that reason, regular education is considered essential.

  • PDF

Effects of Horse Bone Extracts on the Induced Postmenopausal Osteoporosis in Rats (백서의 폐경기 골다공증 모델에서 말뼈 추출물의 효과)

  • Park, Sun-Soon;Lee, Hye-Ja;Yoon, Weon-Jong;Kang, Gyeoung-Jin;Yang, Eun-Jin;Kim, Hyo-Sun;Choo, Chang-Su;Kang, Hee-Kyoung;Yoo, Eun-Sook
    • Korean Journal of Pharmacognosy
    • /
    • v.41 no.3
    • /
    • pp.204-209
    • /
    • 2010
  • Osteoporosis is a metabolic bone disease associated with an imbalance of bone remodeling. Osteoporosis is characterized by decreased bone mass and increased bone fractures. In this study, we investigated the effects of horse bone extracts (HBEs) in vivo. Horse bone was extracted with 80% alcohol (HBE-A) at $100^{\circ}C$ or water (HBE-W) at $120^{\circ}C$. Animal model of postmenopausal osteoporosis was used, in which osteoporosis was induced by ovariectomy of female S.D. rats (female rats were divided into 5 groups), and HBEs were administered to ovariectomized rats every day for 8 weeks. After 8 weeks, the rats were sacrificed and the following osteoporotic factors were measured: body weight, bone mineral density (BMD), uterine/body weight ratio, serum estradiol (E2), and serum alkaline phosphatase (ALP). The results showed that the administration of HBE-W decreased the changes of body weight in ovariectomized rats. HBE-W increased the uterine/body weight ratio and BMD. In addition, HBEs decreased the ALP. Therefore, HBEs may be used for the prevention or treatment of bone disease.

Effect of High glucose on JNK/ERK signaling pathway in UMR106 cells

  • Jung, In-Ok;Jin, Mei-Hua;Kim, Sung-Jin
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.79-79
    • /
    • 2003
  • Recently diabetes has been found to be associated with metabolic bone diseases such as osteoporosis. In the present study, attempts have been made-to explore the effect of high glucose in bone formation. Osteoblast-like UMR 106 cells were treated with high glucose (22mM, 33mM, 44mM) for 1 or 2 days. High glucose significantly inhibited proliferation of UMR106 cells in a time- and dose- dependent manner as evidenced by MTT assay. For the evaluation of collagen synthesis, UMR 106 cells were cultured in high glucose media (44mM) for 24 h and the ratio of collagen content to total protein was measured. In addition, gene expression pattern of type I collagen was assessed by RT-PCR. The high concentration of glucose inhibited a collagen synthesis, a marker of bone formation activity. JNK, c- Jun N-terminal Kinase, is known to play an important role in stress-associated cell death. In this regard, we tested to determine whether high glucose has any effect on JNK activity. It has been found that treatment of high glucose induced phosphorylation of JNK. On the other hand, ERK phosphorylation was inhibited by high glucose in a dose-dependent manner. Taken together, Therefore these results indicate that inhibition of proliferation in UMR 106 cells following high glucose is related to JNK/ERK containing signal pathways. This study showed high glucose concentration could alter the bone metabolism leading to defective bone formation, suggesting that high glucose due to diabetes may playa significant role in the development of metabolic bone disease.

  • PDF

Effects of Resistance Exercise on Bone Health

  • Hong, A Ram;Kim, Sang Wan
    • Endocrinology and Metabolism
    • /
    • v.33 no.4
    • /
    • pp.435-444
    • /
    • 2018
  • The prevalence of chronic diseases including osteoporosis and sarcopenia increases as the population ages. Osteoporosis and sarcopenia are commonly associated with genetics, mechanical factors, and hormonal factors and primarily associated with aging. Many older populations, particularly those with frailty, are likely to have concurrent osteoporosis and sarcopenia, further increasing their risk of disease-related complications. Because bones and muscles are closely interconnected by anatomy, metabolic profile, and chemical components, a diagnosis should be considered for both sarcopenia and osteoporosis, which may be treated with optimal therapeutic interventions eliciting pleiotropic effects on both bones and muscles. Exercise training has been recommended as a promising therapeutic strategy to encounter the loss of bone and muscle mass due to osteosarcopenia. To stimulate the osteogenic effects for bone mass accretion, bone tissues must be exposed to mechanical load exceeding those experienced during daily living activities. Of the several exercise training programs, resistance exercise (RE) is known to be highly beneficial for the preservation of bone and muscle mass. This review summarizes the mechanisms of RE for the preservation of bone and muscle mass and supports the clinical evidences for the use of RE as a therapeutic option in osteosarcopenia.

Morphological Changes of Bones and Joints with Rheumatoid Arthritis and Osteoarthritis

  • Hong, Yun-Kyung;Javaregowda, Palaksha Kanive;Lee, Sang-Kil;Lee, Sang-Rae;Chang, Kyu-Tae;Hong, Yong-Geun
    • Reproductive and Developmental Biology
    • /
    • v.35 no.2
    • /
    • pp.143-149
    • /
    • 2011
  • Arthritis is a common disease in aged people, and is clinically divided into rheumatoid arthritis (RA) and osteoarthritis (OA). Although common symptoms such as pain are present, the underlying pathological mechanisms are slightly different. Therefore, the objectives of the present study were to compare joint damage induced by RA and OA by analyzing the major morphological and molecular differences, and to propose a suitable therapeutic intervention based on the pathophysiological conditions of bones and joints. For the RA animal model, 8-week-old DBA1/J mice were immunized with bovine type II collagen emulsified in complete Freund's adjuvant (CFA). Normal C57BL/6 mice (over 2 years of age) were used for OA. The clinical arthritis score was calculated using a subjective scoring system, and paw thicknesses were measured using calipers. The serum TNF ${\alpha}$ level was analyzed using an ELISA kit. Micro-CT was used to identify pathological characteristics and morphological changes. In collagen-induced RA mice, there were increased ankle joint volumes and clinical scores (p<0.01). The concentration of TNF ${\alpha}$ was significantly increased from 3 to 7 weeks after immunization. Micro-CT images showed trabecular bone destruction, pannus formation, and subchondral region destruction in RA mice. OA among aged mice showed narrowed joint spaces and breakdown of articular cartilage. This study suggests that a careful therapeutic intervention between RA and OA is required, and it should be based on morphological alteration of bone and joint.

Evaluation of the Effectiveness of the Shielding Device and the Organ Dose of Subject During Bone Mineral Density (골밀도검사에서 피검자의 장기선량 측정 및 차폐기구의 효용성 평가)

  • Cho, Yong-In;Kim, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.43 no.3
    • /
    • pp.187-194
    • /
    • 2020
  • Bone mineral density is a examination to measure the amount of bone in patients with metabolic bone disease. It is a low dose, but may cause unnecessary exposure to the gonads and other organs located in the periphery when examining the lumbar and proximal femurs. Therefore, the purpose of this study was to evaluated the exposure dose for each organ exposed during the bone mineral density through simulation, and analyzed the applicability of the subject to radiation shielding devices using 3D printing materials. As a result, the highest dose was shown at 11.47 uSv in the breast during lumbar examination and 8.98 uSv in the testis during proximal femur examination. Also, the farther away from the examination site, the lower the effect of the scattering-ray. The shielding effect of using 3D printing shielding device showed high results in proportion to the effective atomic number and specific gravity of the printing material. Among the printing materials, ABS + W showed an effect of at least 78.72 to 96.3 9% compared to the existing lead material.