• Title/Summary/Keyword: Meta-Heuristic Algorithms

Search Result 96, Processing Time 0.026 seconds

Application of Self-Adaptive Meta-Heuristic Optimization Algorithm for Muskingum Flood Routing (Muskingum 홍수추적을 위한 자가적응형 메타 휴리스틱 알고리즘의 적용)

  • Lee, Eui Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.29-37
    • /
    • 2020
  • In the past, meta-heuristic optimization algorithms were developed to solve the problems caused by complex nonlinearities occurring in natural phenomena, and various studies have been conducted to examine the applicability of the developed algorithms. The self-adaptive vision correction algorithm (SAVCA) showed excellent performance in mathematics problems, but it did not apply to complex engineering problems. Therefore, it is necessary to review the application process of the SAVCA. The SAVCA, which was recently developed and showed excellent performance, was applied to the advanced Muskingum flood routing model (ANLMM-L) to examine the application and application process. First, initial solutions were generated by the SAVCA, and the fitness was then calculated by ANLMM-L. The new value selected by a local and global search was put into the SAVCA. A new solution was generated, and ANLMM-L was applied again to calculate the fitness. The final calculation was conducted by comparing and improving the results of the new solution and existing solutions. The sum of squares (SSQ) was used to calculate the error between the observed and calculated runoff, and the applied results were compared with the current models. SAVCA, which showed excellent performance in the Muskingum flood routing model, is expected to show excellent performance in a range of engineering problems.

Optimizing reinforced concrete beams under different load cases and material mechanical properties using genetic algorithms

  • Zhu, Enqiang;Najem, Rabi Muyad;Dinh-Cong, Du;Shao, Zehui;Wakil, Karzan;Ho, Lanh Si;Alyousef, Rayed;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Alrshoudi, Fahed;Mohamed, Abdeliazim Mustafa
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.467-485
    • /
    • 2020
  • Genetic Algorithm (GA) is a meta-heuristic algorithm which is capable of providing robust solutions for optimal design of structural components, particularly those one needs considering many design requirements. Hence, it has been successfully used by engineers in the typology optimization of structural members. As a novel approach, this study employs GA in order for conducting a case study with high constraints on the optimum mechanical properties of reinforced concrete (RC) beams under different load combinations. Accordingly, unified optimum sections through a computer program are adopted to solve the continuous beams problem. Genetic Algorithms proved in finding the optimum resolution smoothly and flawlessly particularly in case of handling many complicated constraints like a continuous beam subjected to different loads as moments shear - torsion regarding the curbs of design codes.

The Ant Algorithm Considering the Worst Path in Traveling Salesman problems (순회 외판원 문제에서 최악 경로를 고려한 개미 알고리즘)

  • Lee, Seung-Gwan;Lee, Dae-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2343-2348
    • /
    • 2008
  • Ant algorithm is new meta heuristic for hard combinatorial optimization problem. It is a population based approach that uses exploitation of positive feedback as well as greedy search. It was first proposed for tackling the well known Traveling Salesman Problem. In this paper, we propose the improved $AS_{rank}$ algorithms. The original $AS_{rank}$ algorithm accomplishes a pheromone updating about only the paths which will be composed of the optimal path is higher, but, the paths which will be composed the optimal path is lower does not considered. In this paper, The proposed method evaporate the pheromone of the paths which will be composed of the optimal path is lowest(worst tour path), it is reducing the probability of the edges selection during next search cycle. Simulation results of proposed method show lower average search time and average iteration than original ACS.

A Hybrid Metaheuristic for the Series-parallel Redundancy Allocation Problem in Electronic Systems of the Ship

  • Son, Joo-Young;Kim, Jae-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.341-347
    • /
    • 2011
  • The redundancy allocation problem (RAP) is a famous NP.complete problem that has beenstudied in the system reliability area of ships and airplanes. Recently meta-heuristic techniques have been applied in this topic, for example, genetic algorithms, simulated annealing and tabu search. In particular, tabu search (TS) has emerged as an efficient algorithmic approach for the series-parallel RAP. However, the quality of solutions found by TS depends on the initial solution. As a robust and efficient methodology for the series-parallel RAP, the hybrid metaheuristic (TSA) that is a interactive procedure between the TS and SA (simulated annealing) is developed in this paper. In the proposed algorithm, SA is used to find the diversified promising solutions so that TS can re-intensify search for the solutions obtained by the SA. We test the proposed TSA by the existing problems and compare it with the SA and TS algorithm. Computational results show that the TSA algorithm finds the global optimal solutions for all cases and outperforms the existing TS and SA in cases of 42 and 56 subsystems.

Optimal and Approximate Solutions of Object Functions for Base Station Location Problem (기지국 위치 문제를 위한 목적함수의 최적해 및 근사해)

  • Sohn, Surg-Won
    • The KIPS Transactions:PartC
    • /
    • v.14C no.2
    • /
    • pp.179-184
    • /
    • 2007
  • The problem of selecting base station location in the design of mobile communication system has been basically regarded as a problem of assigning maximum users in the cell to the minimum base stations while maintaining minimum SIR. and it is NP hard. The objective function of warehouse location problem, which has been used by many researchers, is not proper function in the base station location problem in CDMA mobile communication, The optimal and approximate solutions have been presented by using proposed object function and algorithms of exact solution, and the simulation results have been assessed and analyzed. The optimal and approximate solutions are found by using mixed integer programming instead of meta-heuristic search methods.

A Simulated Annealing Algorithm for Maximum Lifetime Data Aggregation Problem in Wireless Sensor Networks (무선 센서 네트워크에서 최대 수명 데이터 수집 문제를 위한 시뮬레이티드 어닐링 알고리즘)

  • Jang, Kil-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1715-1724
    • /
    • 2013
  • The maximum lifetime data aggregation problem is to maximize the network lifetime as minimizing the transmission energy of all deployed nodes in wireless sensor networks. In this paper, we propose a simulated annealing algorithm to solve efficiently the maximum lifetime data aggregation problem on the basis of meta-heuristic approach in wireless sensor networks. In order to make a search more efficient, we propose a novel neighborhood generating method and a repair function of the proposed algorithm. We compare the performance of the proposed algorithm with other existing algorithms through some experiments in terms of the network lifetime and algorithm computation time. Experimental results show that the proposed algorithm is efficient for the maximum lifetime data aggregation problem in wireless sensor networks.

A Hybrid Parallel Genetic Algorithm for Reliability Optimal Design of a Series System (직렬시스템의 신뢰도 최적 설계를 위한 Hybrid 병렬 유전자 알고리즘 해법)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.2
    • /
    • pp.48-55
    • /
    • 2010
  • Reliability has been considered as a one of the major design measures in various industrial and military systems. The main objective is to suggest a mathematical programming model and a hybrid parallel genetic algorithm(HPGA) for the problem that determines the optimal component reliability to maximize the system reliability under cost constraint in this study. Reliability optimization problem has been known as a NP-hard problem and normally formulated as a mixed binary integer programming model. Component structure, reliability, and cost were computed by using HPGA and compared with the results of existing meta-heuristic such as Ant Colony Optimization(ACO), Simulated Annealing(SA), Tabu Search(TS) and Reoptimization Procedure. The global optimal solutions of each problem are obtained by using CPLEX 11.1. The results of suggested algorithm give the same or better solutions than existing algorithms, because the suggested algorithm could paratactically evolved by operating several sub-populations and improving solution through swap and 2-opt processes.

Probabilistic performance-based optimal design of low-rise eccentrically braced frames considering the connection types

  • Mohammad Ali Fathalia;Seyed Rohollah Hoseini Vaez
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.673-687
    • /
    • 2023
  • In this study, the weight and the connections type layout of low-rise eccentrically braced frame (EBF) have been optimized based on performance-based design method. For this purpose, two objective functions were defined based on two different aspects on rigid connections, in one of which minimization and in the other one, maximization of the number of rigid connections was considered. These two objective functions seek to increase the area under the pushover curve, in addition to the reduction of the weight and selection of the optimum connections type layout. The performance of these objective functions was investigated in optimal design of a three-story eccentrically braced frame, using two meta-heuristic algorithms: Enhanced Colliding Bodies Optimization (ECBO) and Enhanced Vibrating Particles System (EVPS). Then, the reliability indices of the optimal designs for both objective functions were calculated for the story lateral drift limits using Monte-Carlo Simulation (MCS) method. Based on the reliability assessment results of the optimal designs and taking the three levels of safety into account, the final designs were selected and their specifications were compared.

Solving the Travelling Salesman Problem Using an Ant Colony System Algorithm

  • Zakir Hussain Ahmed;Majid Yousefikhoshbakht;Abdul Khader Jilani Saudagar;Shakir Khan
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.2
    • /
    • pp.55-64
    • /
    • 2023
  • The travelling salesman problem (TSP) is an important combinatorial optimization problem that is used in several engineering science branches and has drawn interest to several researchers and scientists. In this problem, a salesman from an arbitrary node, called the warehouse, starts moving and returns to the warehouse after visiting n clients, given that each client is visited only once. The objective in this problem is to find the route with the least cost to the salesman. In this study, a meta-based ant colony system algorithm (ACSA) is suggested to find solution to the TSP that does not use local pheromone update. This algorithm uses the global pheromone update and new heuristic information. Further, pheromone evaporation coefficients are used in search space of the problem as diversification. This modification allows the algorithm to escape local optimization points as much as possible. In addition, 3-opt local search is used as an intensification mechanism for more quality. The effectiveness of the suggested algorithm is assessed on a several standard problem instances. The results show the power of the suggested algorithm which could find quality solutions with a small gap, between obtained solution and optimal solution, of 1%. Additionally, the results in contrast with other algorithms show the appropriate quality of competitiveness of our proposed ACSA.

Health monitoring of pressurized pipelines by finite element method using meta-heuristic algorithms along with error sensitivity assessment

  • Amirmohammad Jahan;Mahdi Mollazadeh;Abolfazl Akbarpour;Mohsen Khatibinia
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.211-219
    • /
    • 2023
  • The structural health of a pipeline is usually assessed by visual inspection. In addition to the fact that this method is expensive and time consuming, inspection of the whole structure is not possible due to limited access to some points. Therefore, adopting a damage detection method without the mentioned limitations is important in order to increase the safety of the structure. In recent years, vibration-based methods have been used to detect damage. These methods detect structural defects based on the fact that the dynamic responses of the structure will change due to damage existence. Therefore, the location and extent of damage, before and after the damage, are determined. In this study, fuzzy genetic algorithm has been used to monitor the structural health of the pipeline to create a fuzzy automated system and all kinds of possible failure scenarios that can occur for the structure. For this purpose, the results of an experimental model have been used. Its numerical model is generated in ABAQUS software and the results of the analysis are used in the fuzzy genetic algorithm. Results show that the system is more accurate in detecting high-intensity damages, and the use of higher frequency modes helps to increase accuracy. Moreover, the system considers the damage in symmetric regions with the same degree of membership. To deal with the uncertainties, some error values are added, which are observed to be negligible up to 10% of the error.