Objective: The current meta-analysis was performed to address a more accurate estimation of the association between glutathione S-transferase P1 (GSTP1) codon 105 polymorphism and risk of gastric cancer (GC), which has been widely reported with conflicting results. Methods: A comprehensive literature search was conducted to identify all the relevant studies. Fixed or random effect models were selected based on the heterogeneity test. Publication bias was estimated using Begg's funnel plots and Egger's regression test. Results: A total of 20 studies containing 2,821 GC cases and 6,240 controls were finally included in the analyses. Overall, no significant association between GSTP1 polymorphism and GC risk was observed in worldwide populations. However, subgroup analysis stratified by ethnicity showed that GSTP1 polymorphism was significantly associated with increased risk of GC in Asians (G vs. A, OR = 1.273, 95%CI=1.011-1.605; GG vs. AA, OR=2.103, 95%CI=1.197-3.387; GG vs. AA+AG, OR =2.103, 95%CI=1.186-3.414). In contrast, no significant association was found in Caucasians in any genetic models, except for with AG vs. AA (OR=0.791, 95%CI=0.669-0.936). Furthermore, the GSTP1 polymorphism was found to be significantly associated with GC in patients with H. pylori infection and in those with a cardiac GC. Subgroup analysis stratified by Lauren's classification and smoking status showed no significant association with any genetic model. No studies were found to significantly influence the pooled effects in each genetic mode, and no potential publication bias was detected. Conclusion: This meta-analysis suggested that the GSTP1 polymorphism might be associated with increased risk of GC in Asians, while GSTP1 heterozygote genotype seemed to be associated with reduced risk of GC. Since potential confounders could not be ruled out completely, further studies are needed to confirm these results.
본 연구는 복합저장소 구축 방법과 복합지식 프로세스 개발을 위한 기술적 방법을 제안하였다. 본 연구에서 제안한 복합지식 저장소에 저장되는 데이터 대상은 복합지식 메타데이터와 디지털 자원 모두를 포함하며, 사용목적에 따라 사용자 역할, 기능적 요소, 서비스 범주로 나눌 수 있다. 이 세 가지 요소는 저장소의 추상적 모델을 설명하는 기본적인 구성요소이다. 본 연구에서는 복합지식의 메타데이터를 2가지 요소로 구분하여 정의하였다. Component는 지식을 사용하고 생성하는 주체나 활동단위, 리소스 자체 등에 대한 속성을 나타내고, Context는 지식객체가 포함되어 있는 맥락을 나타낸다. 복합지식 프로세스 Agent는 복합지식의 분류와 등록, 검색, 패턴 정보 관리 등의 역할을 수행하고 복합지식 저장소와 사용자 사이의 데이터 흐름과 처리를 담당한다. 복합지식 프로세스 Agent는 데이터의 검색과 추출, 분산 환경에서 데이터 교환을 위한 데이터의 수집과 출력, 저장된 데이터의 추가, 변경 등이 발생한 것을 알려주는 경고, 데이터의 저장과 등록, 메타데이터 조회 후 원하는 물리적 자료를 요청하는 요청과 전달 등의 기능으로 구성하였다. 본 연구에서 개발하고자하는 추천시스템을 위한 복합지식저장소 구축은 산업 현장에서 적시에 다양한 콘텐츠를 사용자에게 제시함으로서 일과 학습이 동시에 일어날 수 있도록 하여 시의적절한 지식을 실시간 가시화함으로써 학습 생산성을 증대하는데 도움을 줄 수 있다.
공유경제가 디지털 서비스 플랫폼을 기반으로 한 새로운 경제체계로 인식되고 있지만, 국내에서는 사회적인 인식과 이해의 부족으로 공유경제가 아직 자리잡지 못하고 있다. 해외 경제 선진국과 같이 새로운 비즈니스를 창출하고, 이를 통해 신규 시장을 개척하기 위해 공유경제를 긍정적 관점에서 바라보고 이해할 필요성이 있다. 이에 본 연구에서는 전 세계 각 학문 분야에서 진행된 지난 10년간 공유경제 연구를 수집하여 학술적 관점에서 공유경제 연구의 현황을 살펴보고, 더 나아가 이 중에서 MIS 영역의 연구를 선별하여, 공유경제 내 MIS 영역 연구의 동향도 분석해 보았다. 본 연구를 통해 공유경제와 MIS 연구의 연구 흐름을 확인하였고, 공유경제에서의 MIS 연구 중요도와 연관성을 살펴봄으로써 두 연구 간 학제적 연구의 필요성도 도출하였다. 따라서 다양한 학문적 접점을 가진 공유경제가 인접 학문의 활발한 연구를 독려하고, 더 나아가 사회, 경제, 산업적으로 보다 긍정적으로 한국에 자리매김하는데 본 연구가 기여할 수 있기를 기대한다.
진술의 진실성을 평가하는 절차인 진술타당도분석(Statement Validity Analysis: SVA)은 국내외 범죄 수사와 법정 상황에서 활용되고 있다. SVA 절차 중 내용분석 단계에서는 준거기반내용분석(Criteria-Based Content Analysis: CBCA) 준거를 사용하여 진술에서 실제 경험에 기반하였을 때 나타나는 특징들이 현출되는지를 평가한다. CBCA 준거의 변별력과 효과크기에 대한 국내 연구는 다양한 패러다임으로 이루어졌지만, 그 연구 결과들의 일관성은 여전히 검증되지 않았다. 이에 본 연구에서는 국내에서 관련 연구가 시작된 2004년부터 2020년까지 수행된 CBCA 준거 관련 연구들(14개의 연구자료)에 대한 메타분석을 실시하였다. 연구결과, CBCA 총점이 진실과 작화를 성공적으로 변별해내고 있었다. 준거별로는, 네 개의 준거(3번, 4번, 10번, 12번; 모두 인지적 준거)에서 정적(+)인 효과크기가 유의미했다. 그러나 18번 준거(동기적 준거)는 CBCA의 기본 가정과는 반대로, 효과크기가 부적(-)으로 유의미한 것으로 나타났다. 또한, 조절효과분석이 가능한 열한 개의 준거(2번~9번, 12번, 13번, 15번) 각각에 대해 잠재적 조절변인의 영향을 살펴본 결과, 일부 준거들에 대하여 진술인의 성별 및 신분, 연구 유형 및 설계, 사건 유형, 평가자 수, 출판 여부의 조절효과가 유의미한 것으로 나타났다. 따라서 본 연구결과는 진실여부를 타당하게 판단하기 위해서는 CBCA 총점보다는 세부 준거, 특히 인지적 준거에 초점을 맞추는 것이 중요하며, 잠재적 조절변인의 영향 가능성 또한 중요하게 고려해야 함을 시사한다. 관련하여 본 연구의 의의, 제한점 및 추후 연구 방향에 대해 논하였다.
본 연구는 기초학문자료센터가 인문자산 원스톱(One-Stop) 포털 서비스 구축에 있어 효과적인 데이터연계 방향성 제안을 목적으로 하였다. 이를 위해 인문자산을 보유한 국내 기관에 대한 현황을 수집하고 분석하였으며, 대상 기관이 보유한 데이터 분석을 통해 연계 방향성을 제시하였다. 본 연구에서는 첫째, 인문자산의 주제에 대하여 기존 분류체계 검토를 기반으로 인문자산의 분류체계를 제안하였다. 둘째, 조사 대상기관이 보유하고 있는 데이터의 주제와 유형에 대한 구체적인 분석을 통해 인문자산으로 편입될 수 있는 잠재적 데이터의 범주를 설정하였다. 셋째, 인문자산 원스톱 포털 서비스를 제공하고 있는 유사사례 기관의 플랫폼을 분석하였으며, 유사성을 중심으로 원스톱 시스템 구축 시, 적용 가능한 메타필드를 제시하였다.
데이터 전처리 기법 중 하나인 특징 선택은 대규모 데이터셋을 다루는 다양한 응용분야에서 주요 연구 분야 중 하나로 각광받고 있다. 특징 선택은 패턴 인식, 기계학습 및 데이터 마이닝에서 사용됐고, 최근에는 텍스트 분류, 이미지 검색, 침입 탐지 및 게놈 분석과 같은 다양한 분야에 널리 적용되고 있다. 제안 방법은 메타 휴리스틱 알고리즘 중의 하나인 유전 알고리즘을 기반으로 한다. 특징 부분 집합을 찾는 방법은 크게 필터(filter) 방법과 래퍼(wrapper) 방법이 있는데, 본 연구에서는 최적의 특징 부분 집합을 찾기 위해 실제 분류기를 사용한 평가를 하는 래퍼 방법을 사용한다. 실험에 사용한 훈련 데이터셋은 클래스 불균형이 심하여 희소클래스에 대한 분류 성능을 높이기 어렵다. SMOTE 기법을 적용한 훈련 데이터셋을 사용하여 특징 선택을 하고 다양한 기계학습 알고리즘을 사용하여 선택한 특징들의 성능을 평가한다.
본 논문에서는 정신적 과제수행 동안 EEG 뇌파의 정확한 분류방법에 관하여 기술한다. 피험자는 실험 task에서 시각적 자극에 대한 반응, 문제의 해석, 손동작 제어와 키 선택을 수행한다. 선택시간을 감지하기 위하여 측정한 뇌파로부터 $\alpha$, $\beta$, $\theta$, $\gamma$를 분리하고 4가지의 특징들을 해석한파. 이 특징들을 분석하여 각 피험자별로 공통적인 특징플로 구성된 일반 규칙을 설정한다. 본 시스템의 신경망은 1개의 은닉층을 갖는 3층의 피드포워드 신경망 구조를 가지며 학습에는 역전파 학습 알고리즘을 이용하였다. 4명의 피험자를 대상으로 설정한 알고리즘들을 적용하여 평균 87% 분류 성공률을 보였다. 본 논문에서 제안한 방법은 인지적인 정신과제 판별을 위한 방법들과 결합하여 BCI 기술을 위한 기반 기술로 활용될 수 있다.
온라인 소셜미디어의 등장으로 방대한 사용자 데이터가 수집되고 이는 루머의 탐지와 같은 복잡하고 도전적인 사회 문제를 자료 기반 기법으로 해결할 수 있게끔 한다. 최근 딥러닝 기반 모델들이 이러한 문제를 해결하기 위한 빠르고 정확한 기법 중의 하나로서 소개되었다. 하지만 기존에 제시된 모델들은 전파 종료 후 작동하거나 오랜 관찰기간을 필요로 하여 활용성이 제한된다. 이 연구에서는 초기 소량 데이터만을 활용하는 recurrent neural networks (RNNs) 기반의 빠른 루머 분류 알고리즘을 제안한다. 제시된 모델은 소셜미디어 스트림을 시계열 자료로 변환하여 사용하며, 이 때 시계열 데이터는 팔로워 수와 같이 정보 전파자 관련 정보는 물론 주어진 컨텐츠에서 추론한 언어심리학적 감성의 점수로 구성된다. 수백만의 트윗을 포함하는 498개의 실제 루머 및 494개의 비루머 사례 분석을 통해 이 연구는 제안하는 RNN 기반 모델이 초기 30개의 트윗 만으로도 (초기 수시간) 0.74 F1의 높은 성능을 보임을 확인한다. 이러한 결과는 실제 응용가능한 수준의 빠르고 효율적인 루머 분류 알고리즘 개발의 초석이 된다.
UCC(User Created Contents) 형태의 다양한 영상 미디어 데이터가 증가함에 따라 의미 있는 서비스를 제공하기 위해 많은 분야에서 활발한 연구가 진행 중이다. 그 중 시맨틱 웹 기반의 미디어 분류에 대한 연구가 진행되고 있지만 기존의 미디어 온톨로지는 메타 정보를 이용하기 때문에 정보의 부재에 따른 한계점이 있다. 따라서 본 논문에서는 영상에서 인지되는 객체를 정하고 그 조합으로 구성된 서술 논리 기반의 온톨로지를 구축하고 영상의 장면에 따른 순서 기반의 규칙을 정의하여 이벤트 인지에 대한 기틀을 제안한다. 또한 증가하는 미디어 데이터에 대한 처리를 위해 분산 인-메모리 기반 프레임워크인 아파치 스파크 스트리밍을 이용하여, 영상 분류를 병렬로 처리하는 방법에 대해 설명한다. 유튜브에서 추출한 영상을 대상으로 대용량 미디어 온톨로지 데이터를 생성하고, 이를 이용하여 제시된 기법에 대한 성능 평가를 진행하여 타당성을 입증한다.
현재 IPTV에서 서비스되는 미디어콘텐츠의 검색 질의어 분석을 통해, 고객의 미디어콘텐츠를 선택하는 기준을 살펴보았다. 그 결과 명시적인 메타정보뿐만 아니라 콘텐츠의 내용(소재, 줄거리 등)과 감성 정보가 중요한 요소가 된다는 점을 발견하였다. 그리하여 본 연구에서는 IPTV에서 제공하는 다양한 미디어콘텐츠를 사용자에게 효율적으로 제공하기 위해, 미디어콘텐츠의 감성 정보를 활용하기 위한 감성분류체계를 설계하였다. 그리고 제안한 감성분류체계를 기반으로 사용자 감성 프로파일을 구축하고, 단계적 처리 모듈을 탑재하여 미디어콘텐츠를 편성하는 맞춤형 큐레이션 시스템을 제안하였다. 마지막으로 제안한 맞춤형 미디어콘텐츠 큐레이션 시스템의 효과를 입증하기 위하여, 사용자 만족도 설문 조사를 실시하여 72.0점을 받았다. 또한 인기도 기준으로 편성한 결과와 제안한 시스템의 편성 결과를 비교한 결과 실 사용자의 시청 행위로 이어지는 비율이 최대 10배 높게 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.