• Title/Summary/Keyword: Mesozooplankton

Search Result 38, Processing Time 0.023 seconds

Mesozooplankton Community in the Chuuk Lagoon of the Federated States of Micronesia (마이크로네시아 축 주의 석호환경 내 동물플랑크톤 군집: 종조성 및 개체수)

  • Kang, Jung-Hoon;Kim, Woong-Seo;Cho, Kyu-Hee
    • Ocean and Polar Research
    • /
    • v.27 no.4
    • /
    • pp.463-476
    • /
    • 2005
  • Mesozooplankton samples were collected to investigate the spatial distribution in the Chuuk lagoon of the Federated States of Micronesia through three surveys from 2002 to 2004. Average temperature was $28.70^{\circ}C$ in August 2002, $30.17^{\circ}C$ in October 2003 and $29.18^{\circ}C$ in July 2004 at a water depth of 2rn. Average salinity was 33.95 psu in August 2002, 33.56 psu in October 2003 and 33.77 psu in July 2004. Total rnosozooplankton consisted of 70 taxa during the study period, among which copepods were the most diverse group. Foraminiferans, radiolarians, copepods and appendicularians, which comprised about 70% of total zooplankton abundance, were important components in the zooplankton community. Within the copepod group, Acartia spp., Centropages spp. and Undinula spp. were dominant in August 2002, Acartia spp., Centropages spp., and Oithona spp. in October 2003, and Acartia spp., Undinula spp., and Oithona spp. in July 2004. Total zooplankton abundance was high around Weno Island, while low in stations located in the northern part of Weno Island. High abundances of appendicularians were found in the southern part of weno Island as well as around Weno Island. Appendicularians foraminiferans, radiolarians, Sagitta spp. and immature copepods accounted for most of the distribution pattern of the mesozzoplankton community throughout the study area. These results suggest that appendicularians may be potential food items for fish larvae around Weno Island in the Chuuk lagoon states.

The Effect of Enhanced Zooplankton on the Temporal Variation of Plankton in a Mesocosm (인위적인 동물플랑크톤 첨가에 따른 중형 폐쇄생태계 내 플랑크톤 변동)

  • Kang Jung-Hoon;Kim Woong-Seo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.2
    • /
    • pp.109-119
    • /
    • 2006
  • This study investigated the effect of artificially enhanced mesozooplankton on the phytoplankton dynamics during fall blooming period using a mesocosm in Jangmok bay located in the Southern Sea of Korea in 2001. The four bags with 2,500 liter seawater containment were directly filled with the ambient water. And then, abundances of mesozooplankton in two experimental bags were treated 6 times higher than those in control bags by towing with net($300{\mu}m$) through the ambient water. Phytoplankton community between control and experimental bags were not significantly different in terms of chlorophyll-a(chl-a) concentration and standing crop (one-way ANOVA, p>0.05) during the study period. Initial high standing crop and chl-a concentration of phytoplankton drastically decreased and remained low until the end of the experiment in all bags. Diatoms, accounting for most of the phytoplankton community, consisted of Skeletonema costatum, Pseudo-nitzschia seriata, Chaetoceros curvisetus, Ch. debilis, Cerataulina pelagica, Thalassiosira pacifica, Cylindrotheca closterium, and Leptocylindrus danicus. Noctiluca scintillans dominated the temporal variation of mesozooplankton abundances, which peaked on Day 10 in the control and experimental bags, while the next dominant copepods showed their peak on Day 7. Shortly after mesozooplankton addition, copepod abundance in the experimental bags was obviously higher than that in the control bags on Day 1, however, it became similar to that in the control bags during the remnant period. It was supported by the higher abundance and length of both ctenophores and hydromedusae in experimental bags relative to the control bags. However, the cascading trophic effect, commonly leading to re-increase of phytoplankton abundance, was not found in the experimental bags, indicating that copepods were not able to control the phytoplankton in the bags based on the low grazing rate of Acartia erythraea. Besides that, rapidly sunken diatoms in the absence of natural turbulence as well as N-limited condition likely contributed the no occurrence of re-increased phytoplankton in the experimental bags.

  • PDF

Biogeochemical Model Comparison in Terms of Microplankton-Detritus (MPD) Parameterisation

  • Tett, Paul;Kim, Kyung-Ryul;Lee, Jae-Young
    • Journal of the korean society of oceanography
    • /
    • v.39 no.2
    • /
    • pp.136-147
    • /
    • 2004
  • Different model formulations in available models were compared with Microplankton-Detritus (MPB) model, and well documented FDM and ERSEM models were the candidate for these comparison. Different formulations in both candidate models were expressed in terms of MPD parameterization. Even though there are differences in the control of autotroph growth among models, it was found that some of the more important microplankton parameters expressed incomparable terms have broadly similar values in all the models. However, an important difference was proved to be the direct contribution of microheterotrophs to the Detritus compartment in FDM and ERSEM, whereas in MPD microplankton biomass passes to Detritus only by way of mesozooplankton grazing.

Spatio-temporal Variation of Mesozooplankton in Asan Bay (아산만 해역 중형동물플랑크톤의 시공간적 변동)

  • LEE C. R.;PARK C.;YANG S. R.;SIN Y. S.
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • Previous studies on zooplankton in Asan Bay were mostly based on samples collected seasonally with three months intervals. Present study was aimed to know the temporal variation of meso-zooplankton distribution using the data collected monthly. Relationships between zooplankton abundances and environmental factors such as seawater temperatures, salinities and chlorophyll-a contents were also studied. Seawater temperature showed typical pattern of seasonal variation found in temperate waters. The fluctuations of environmental factors ranged relatively wider In the inner part of the bay than those in outer part of the bay. Salinity was very low right after the summer rainy period due to the sporadic outflow of freshwater from the adjacent artificial lakes. Sudden changes in salinity seemed to have significant impact on zooplankton assemblages. Chlorophyll-a contents were increased in general when compared with previous reports probably due to the recent human exploitations in the coastal zone, which might enhance the nutrients level . The timing and duration of spring bloom showed geographical differences. In the inner part of the bay it began earlier (February) and last longer (three months) while in the outer part of the bay it began late (April) and last just one month. Zooplankton abundance, especially most abundant taxon Acartia hongi, showed weak but significant positive correlation with chlorophyll-a contents. The difference in temporal variation found with two different sampling intervals indicated the necessity of shorter time interval samplings.

Variation in Planktonic Assemblages in Asan Bay During the Winter-Spring Bloom (아산만 해역 동-춘계 대증식기의 플랑크톤 변화)

  • Park, Chul;Lee, Doo-Byoul;Lee, Chang-Rae;Yang, Sung-Ryull;Jung, Byoung-Gwan
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.4
    • /
    • pp.308-319
    • /
    • 2008
  • Temporal variations in plankton assemblages and environmental factors in Asan Bay and their relationships were examined with the data collected from February till early June, 2005. Seawater temperatures showed typical pattern of temporal change observed in temperate waters. Salinity variation was minor. Phytoplankton biomass showed two peaks, one in February only in the inner part of the bay and the other in May in the whole bay. Phytoplankton succession was clearly shown with the increase of seawater temperatures. Diatom (Bacillariophyceae) dominated in February, diatom and cryptomonads (Cryptophyceae) prevailed in May, and dinoflagellates (Dinophyceae) was most abundant in June. Spring bloom in Asan Bay occurred about one month earlier than those observed in temperate seas. Among the inorganic nutrients (N, P and Si), only silicate concentration showed a significant negative correlation with phytoplankton biomass, indicating the sink of this nutrient in the bay to be the uptake by phytoplankton. Nitrate concentration seemed to be a limiting factor in this bay during the study period. Mesozooplankton abundances showed a significant positive correlation with seawater temperatures and a significant negative correlation with phytoplankton biomass. Increase of mesozooplankton abundance followed phytoplankton increase with the time lag of about two months. This increase of zooplankton seemed to be the result of increased seawater temperatures and food.

Changes in Mesozooplankton Community Around the Rainy Season in Asan Bay, Korea (아산만 해역에서 장마기 전후 중형동물플랑크톤 군집의 변화)

  • Lee, Doo-Byoul;Park, Chul;Yang, Sung-Ryull;Shin, Yong-Sik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.4
    • /
    • pp.337-348
    • /
    • 2007
  • Characteristics in distributions of T, S, nutrients, chlorophyll ${\alpha}$ concentrations and meso-zooplankton abundances and the relations among these parameters were investigated with the data collected in Asan Bay around the rainy season from May 24 till August 25, 2006 at about 10 days interval. Freshwater input during the rainy season clearly affected the distributions of zooplankton and phytoplankton (chlorophyll ${\alpha}$). Freshwater discharge resulted in high nutrients decreased zooplankton abundances. On the contrary, chlorophyll ${\alpha}$ concentrations increased at the end of the rainy season. It seemed that the increase of chlorophyll ${\alpha}$ concentrations was the result of the decreased zooplankton and enriched nutrients caused by freshwater discharges. Seawater temperatures were certainly the reason for the zooplankton succession. However, overall abundance of zooplankton and abundances of some zooplankton such as Noctiluca scintillans, Acartia pacifica, and Sagitta crassa seemed to be influenced by lowered salinity caused by heavy rain rather than seawater temperatures.

On the Distribution of Zooplankton in the Southeastern Barents Sea during July 2002

  • Lee, Kang-Hyun;Chung, Kyung-Ho;Soh, Ho-Young;Lee, Wonchoel
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.4
    • /
    • pp.392-399
    • /
    • 2003
  • The spatial distribution and composition of the mesozooplankton community in the southeastern Barents Sea were observed at 17 stations, from 12 to 28 July 2002. Six taxa of zooplankton were found, including tintinnids, copepods, cumaceans, appendicularians, polychaetes, and barnacle larvae. Copepods were dominant, comprising 74% of the community. The copepod species Limnocalanus grimaldii, Pseudocalanus acuspes, Calanus glacialis, Calanus finmarchicus, and Microsetella norvegica, and the cumacean species Diastylis rathkei and Campylaspis rubicunda were identified. The overall mean abundance of the zooplankton was 72 indiv.l0 $\mu \textrm m^{-3}$ in the study area, ranging from 4 to 197 indiv.l0$\mu \textrm m^{-3}$. Zooplankton was more abundant at the oceanic than the coastal stations. The highest biomass measured was 97.4mg $\mu \textrm m^{-3}$, the mean biomass was 36.9 mg 10$\mu \textrm m^{-3}$, 93% of which was copepods. Pseudocalanus acuspes, C. glacialis, and C. finmarchicus predominated, accounting for 61% of abundance and 86% of biomass. Spatial distributions of the zooplankton community in the study area depended on the variations in water temperature and salinity, which were influenced by freshwater runoff from the continent.

Description of Feeding Apparatus and Mechanism in Nemopilema nomurai Kishinouye (Scyphozoa: Rhizostomeae)

  • Lee, Hye-Eun;Yoon, Won-Duk;Lim, Dong-Hyun
    • Ocean Science Journal
    • /
    • v.43 no.1
    • /
    • pp.61-65
    • /
    • 2008
  • Feeding apparatus, mechanism and passage of ingested prey were described for Nemopilema nomurai (Scyphozoa: Rhizostomeae). N. nomurai medusae without central mouths have developed complicated canal systems connecting the tip of the tentacle and oral arm to the gut cavity. The number of junctions in the canal system increases with the bell diameter. The prey is gathered by paralyzing nematocyst at the tentacles and by adhering cirri at the oral arms and scapulets. They are engulfed into the terminal pore located at the oral arms and scapulets, and entered into the gut cavity via the canal system. The estimated digestion time is 1 hour and 20 min. The diameter of terminal pore is always about 1 mm, implying that they could not eat prey larger than that pore size. On the other hand, ephyrae have central mouths and could swallow prey as large as adults could. Exploitation of the same size of food by adult and ephyra implies that N. nomurai can affect seriously the whole food web, massively ingesting micro- and mesozooplankton and cutting the energy transfer toward the higher level of carnivores.

Population Dynamics of Jellyfish Aurelia aurita (s.l.) in Sihwa Lake (시화호에서 보름달물해파리 Aurelia aurita (s.l.)의 개체군변동)

  • Hong, Hyun-Pyo;Han, Chang-Hoon;Yoo, Jeong-Kyu
    • Ocean and Polar Research
    • /
    • v.35 no.3
    • /
    • pp.205-217
    • /
    • 2013
  • We investigated the population dynamics of Aurelia aurita in Sihwa Lake from April to October in 2009. Salinity ranged from 5.9 to 30.7 psu at the surface. Abundance of mesozooplankton ranged from 3 to 111,874 indiv. $m^{-3}$. Ephyrae occurred from April to May with the peak in abundance occurring on 17 April. Maximum density of ephyrae was observed near the power transmission towers that are known to be habitats of polyps. Mortality of ephyrae was lower than in other areas because of the abundant prey concentration and the absence of predators. Young medusae occurred from April to July with the peak in abundance occurring on 8 May. Adult medusae occurred from May to July with the peak in abundance on 25 June and they disappeared before the rainy season. Planula occurred only in May and June with the peak in abundance on 25 June. Growth rates of Aurelia aurita ranged from -0.06 to 0.34 $d^{-1}$, and decreased rapidly after May. The period in which adult medusa occurred was restricted, compared with those in other area in Korea (e.g., Masan Bay) and Japan (e.g., Tokyo Bay). In the period of this study, the available food was limited in June and salinity decreased to ca. 20 psu in May because of the beginning of the wet season. We assumed that the exceptionally short period of occurrence of the medusa may be a response of adults to changes in temperature, salinity or food limitation which leads to the precocious maturation of young medusa and the release of planula and that the brief occurrence of medusa was caused by an abrupt decrease in activity after the release of planula.

Phytoplankton variability in digestive tract of the Manila clam Ruditapes philippinarum in Gomso Bay, west coast of Korea (서해 곰소만에서 바지락 소화관 내용물의 변동 특성)

  • Kim, Hyung Seop
    • The Korean Journal of Malacology
    • /
    • v.32 no.3
    • /
    • pp.165-174
    • /
    • 2016
  • Feeding behaviour of the manila clam Ruditapes philippinarum was qualitatively and quantitatively characterized by comparing the contents composition in digestive tract of the clam and the phytoplankton community in surface sea water in Gomso Bay, west coast of Korea. The contents of digestive tract comprised diatoms (71.5%), dinoflagellates (13.1%), nannoplankton (6.6%), and detritus including mesozooplankton. The abundance of food organisms in digestive tract of the clam was high in winter and spring, while low in summer and autumn. But The biomass of phytoplankton in surface sea water revealed the highest value in autumn. Also, the larger the clam size increases the abundance of food organisms in digestive tract. The dominant species in digestive tract were Paralia sulcata and Navicula arenaria such as benthic diatoms and dinoflagellate cysts, whereas the dominant species in surface sea water were Chaetoceros, Skeletonema, Asterionellopsis such as pelagic diatoms in genus, cryptomonads, and P. sulcata. Analyses of digestive tract revealed that benthic diatoms especially represent an important constituent of food organisms in the malina clam and different of phytoplankton size and morphology explain preference for food selectivity.