Browse > Article

Biogeochemical Model Comparison in Terms of Microplankton-Detritus (MPD) Parameterisation  

Tett, Paul (School of Life Sciences, Napier University)
Kim, Kyung-Ryul (OCEAN laboratory, Research Institute of Oceanography, School of Earth and Environmental Sciences, Seoul National University)
Lee, Jae-Young (OCEAN laboratory, Research Institute of Oceanography, School of Earth and Environmental Sciences, Seoul National University)
Publication Information
Journal of the korean society of oceanography / v.39, no.2, 2004 , pp. 136-147 More about this Journal
Abstract
Different model formulations in available models were compared with Microplankton-Detritus (MPB) model, and well documented FDM and ERSEM models were the candidate for these comparison. Different formulations in both candidate models were expressed in terms of MPD parameterization. Even though there are differences in the control of autotroph growth among models, it was found that some of the more important microplankton parameters expressed incomparable terms have broadly similar values in all the models. However, an important difference was proved to be the direct contribution of microheterotrophs to the Detritus compartment in FDM and ERSEM, whereas in MPD microplankton biomass passes to Detritus only by way of mesozooplankton grazing.
Keywords
Biogeochemical Model; Microplankton; MPD; FDM; ERSEM;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Azam, F., T. Fenche1, I.G. Field, I.S. Gray, L.A. Meyer-Reil and F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser., 10: 257-263
2 Baretta J.W., W. Ebenhoh and P. Ruardij, 1995. The European Regional Seas Ecosystem Model, a complex marine ecosystem model. Neth. J. Sea Res., 33: 233-246
3 Eppley, R.W., 1972. Temperature and phytoplankton growth in the sea. U.S. Fish. Wild. Ser. Bull., 70: 1063-1085
4 Fasham, M.J.R, J.L. Sarmineto, R.D. Slater, H.W. Ducklow and R. Williams, 1993. Ecosystem behaviour at Bermuda Station 'S' and Ocean Weather Station 'India': a general circulation model and observational analysis. Global Biogeochemical Cycles, 7: 379-415
5 Holling, C.S.; 1959. Some characteristics of simple types of predation and parasitism. Can. Entomol., 91: 385-398
6 Hutson, V, 1984. Predator mediated coexistence with a switching predator. Math. Biosci., 68: 233-246
7 Steele, J.H., 1962. Environmental control of photosynthesis in the sea. Limnol. Oceanogr., 7: 137-150
8 Talling, J.F., 1957. The phytoplankton population as a compound photosynthetic system. New Phytol., 56: 133-149
9 Varela, R.A., A. Cruzado, and J.E. Gabaldon, J.E., 1995. Modelling primary production in the North Sea using the European Regional Seas Ecosystem Model. Neth. J. Sea Res., 33: 337-361
10 Baretta, J.W., W. Admiraal, F. Colijn, J.F.P. Malschaert and P. Ruardij, 1988. The construction of the pelagic submodel. In Tidal flat estuaries. Simulation and analysis of the Ems estuary (ed. Baretta, J. W. & Ruardij, P.), Ecological Studies, 71: 77-104. Springer-Verlag, Heidelberg
11 Paffenhofer, G.-A. and R.P. Harris, 1976. Feeding, growth and reproduction of the marine planktonic copepod Pseudocalanys elongatus Boeck. J. Mar. Biol. Ass. U.K., 56: 327-344
12 Lee, J.-Y., P. Tett and K.-R. Kim, 2003. Parameterising a microplankton Model. J. Korean Soc. Oceanogr., 38: 185-210
13 Denman, K.L., 2003. Modelling planktonic ecosystems: parameterizing complexity. Prog. Oceanogr., 57: 429-452
14 Tett, P. and M.R Droop, 1988. Cell quota models and planktonic primary production. In Handbook of Laboratory Model Systems for Microbial Ecosystems (ed. Wimpenny, J. W. T.), 2: 177-233. CRC Press, Florida
15 Taylor, A.H. and I. Joint, 1990. A steady-state analysis of the microbial loop in stratified systems. Mar. Ecol. Prog. Ser., 59: 1-17
16 Droop, M.R, 1983. 25 years of algal growth kinetics - a personal view. Bot. Mar., 26: 99-112
17 Davidson, K., 1996. Modelling microbial food webs. Mar. Ecol. Prog. Ser., 145: 279-296
18 Tett, P., 1990. A three layer vertical and microbiological processes model for shelf seas. Proudman Oceanographic Laboratory, pp.85
19 Fasham, M.J.R., H.W. Ducklow and S.M. McKelvie, 1990. A nitrogen-based model of plankton dynamics in the oceanic mixed layer. J. Mar. Res., 48: 591-639
20 Baretta-Bekker, J.G., J.W. Baretta and W. Ebenhoh, 1997. Microbial dynamics in the marine ecosystem model ERSEM II with decoupled carbon assimilation and nutrient uptake. J. Sea Res., 38: 195-211
21 Tett, P. and H. Wilson, 2000. From biogeochemical to ecological models of marine microplankton. J. Mar. Sys., 25: 431-446
22 Edwards, A.M. and J. Brindley, 1999. Zooplankton mortality and the dynamical behaviour of plankton population models. Bull. Math. Bioi., 61: 303-339
23 Dugdale, R.C., 1967. Nutrient limitation in the sea: dynamics, identification, and significance. Limnol. Oceanogr., 12: 685-695
24 Paffenhofer, G.-A., 1971. Grazing and ingestion rates of nauplii, copepods and adults of the marine planktonic copepod Calanus helgolandicus. Mar. Biol., 11: 286-298
25 Steele, J.H. and E.W. Henderson, 1992. The role of predation in plankton models. J. Plankton. Res., 14: 157-172
26 Haney, J.D. and G.A. Jackson, 1996. Modelling phytoplankton growth rates. J. Plankton Res., 18: 63-85
27 Lederman, T.C. and P. Tett, 1981. Problems in modelling the photosynthesis-light relationship for phytoplankton. Bot. Mar., 24: 125-134
28 Smith, E.L., 1936. Photosynthesis in relation to light and carbon dioxide. Proc. Nat. Acad. Sci. Amer., 22: 504