• Title/Summary/Keyword: Mesoscale circulation

Search Result 42, Processing Time 0.029 seconds

Numerical Simulation of Effect of Urban Land-use Type and Anthropogenic Heat on Wind Field (지표면 변화와 인공열이 바람장에 미치는 영향에 관한 수치 시뮬레이션)

  • 홍정혜;김유근
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.5
    • /
    • pp.511-520
    • /
    • 2000
  • The urban atmosphere is characterized by th difference in surface and atmospheric environment between urban and more natural area. To investigate th climatic effect of land use type and anthropogenic heat of urban on wind field, numerical simulations were carried out under typical summer synoptic condition. The wind model PNU_MCM(Pusan National University Mesoscale Circulation Model) is based on the three-dimensional Boussinesq equations, taking into account the hydrostatic assumption . Since lane-use differs over every subdivision on Pusan the surface energy budget model includes sub0grid parameterization scheme which can calculate the total heat flux over a grid surface composed of different surfaces. The simulated surface wind agrees well with the observed value, and average over 6 days which represent typical summer lan-sea breeze days, August 1998, i.e. negligible gradient winds and almost clear skies. Urbanization makes sea-breeze enhance at day and reduce land-breeze at night. The results show that contribution of land-use type is much larger than that of anthropogenic heat in Pusan.

  • PDF

Characteristics of Mesoscale Circulation with the Detailed Building Distribution in Busan Metropolitan Area (부산지역 빌딩 분포 상세화에 따른 중규모 순환 특성)

  • Son, Jeong-Ock;Lee, Hwa-Woon;Lee, Soon-Hwan
    • Journal of Environmental Science International
    • /
    • v.21 no.2
    • /
    • pp.203-215
    • /
    • 2012
  • In order to clarify the impacts of thermal difference in atmospheric boundary layer due to the different sophistication of building information in Busan metropolitan areas, several numerical simulations were carried out. ACM (Albedo Calculation Model) and WRF (Weather Research and Forecasting) was applied for estimating albedo and meteorological elements in urban area, respectively. In comparison with coarse aggregated and small buildings, diurnal variation of albedo is highly frequent and its total value tend to be smaller in densely aggregated and tall buildings. Estimated TKE and sensible heat flux with sophisticatedly urban building parameterization is more resonable and valid values are mainly induced by urban building sophistication. The simulation results suggest that decreased albedo and increased roughness due to skyscraper plays an important role in the result of thermal change in atmospheric boundary layer.

Development of Fine-grid Numerical Tidal Models of the Yellow Sea and the East China Sea (세격자체계의 황해 및 동지나해 조석모형의 개발)

  • 최병호
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.4
    • /
    • pp.231-244
    • /
    • 1990
  • The objectives of this multiyear research are directed toward the investigation of mesoscale circulation dynamics in the Yellow Sea and the East China Sea. With the advent of Supercomputers and increasing necessity of resolving the flow with enough details, a hydrodynamic numerical model of the East China Sea has been developed with resolution of 1/15$^{\circ}$latitude by 1/12$^{\circ}$longitude covering the entire continental shelf. As a first step M$_2$tidal regime representing the domanant tidal conditions of the shelf was computed. Preliminary results are presented and discussions for further developments are presented.

  • PDF

The numerical study on relationship between mesoscale circulation and deposition of air pollutant (1) - particle dry deposition according to diameter - (중규모 순환과 입자오염물질의 침적에 관한 수치연구(1) - 입자상 물질의 입경별 침적양 추정 -)

  • 이화운;이순환;반수진
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.399-400
    • /
    • 2002
  • 오염물질의 지표농도 결정에 있어 침적과정은 아주 중요하다. 이전의 연구들에서 가스상 물질 중 특히 SO$_2$의 경우 대기중으로부터 건성침적 과정에 의해서 제거되는 양이 대기로의 총 방출량의 약 1/3배정도 됨을 나타내었다(Arritt et al. 1988; Hicks et al., 1991). 입자상 물질의 침적 역시 오염물질의 장거리 수송의 중요한 부분을 차지하고 있다. 특히 황사기간중의 침적과정은 물질의 국가간이동으로 매우 중요시되면서, 건성침적량 및 영향에 대한 연구가 수행되어져 왔다(Kim et al.,1991). (중략)

  • PDF

Statistical Characteristics of East Sea Mesoscale Eddies Detected, Tracked, and Grouped Using Satellite Altimeter Data from 1993 to 2017 (인공위성 고도계 자료(1993-2017년)를 이용하여 탐지‧추적‧분류한 동해 중규모 소용돌이의 통계적 특성)

  • LEE, KYUNGJAE;NAM, SUNGHYUN;KIM, YOUNG-GYU
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.267-281
    • /
    • 2019
  • Energetic mesoscale eddies in the East Sea (ES) associated with strong mesoscale variability impacting circulation and environments were statistically characterized by analyzing satellite altimeter data collected during 1993-2017 and in-situ data obtained from four cruises conducted between 2015 and 2017. A total of 1,008 mesoscale eddies were detected, tracked, and identified and then classified into 27 groups characterized by mean lifetime (L, day), amplitude (H, m), radius (R, km), intensity per unit area (EI, $cm^2/s^2/km^2$), ellipticity (e), eddy kinetic energy (EKE, TJ), available potential energy (APE, TJ), and direction of movement. The center, boundary, and amplitude of mesoscale eddies identified from satellite altimeter data were compared to those from the in-situ observational data for the four cases, yielding uncertainties in the center position of 2-10 km, boundary position of 10-20 km, and amplitude of 0.6-5.9 cm. The mean L, H, R, EI, e, EKE, and APE of the ES mesoscale eddies during the total period are $95{\pm}104$ days, $3.5{\pm}1.5cm$, $39{\pm}6km$, $0.023{\pm}0.017cm^2/s^2/km^2$, $0.72{\pm}0.07$, $23{\pm}21TJ$, and $588{\pm}250TJ$, respectively. The ES mesoscale eddies tend to move following the mean surface current rather than propagating westward. The southern groups (south of the subpolar front) have a longer L, larger H, R, and higher EKE, APE; and stronger EI than those of the northern groups and tend to move a longer distance following surface currents. There are exceptions to the average characteristics, such as the quasi-stationary groups (the Wonsan Warm, Wonsan Cold, Western Japan Basin Warm, and Northern Subpolar Frontal Cold Eddy groups) and short-lived groups with a relatively larger H, higher EKE, and APE and stronger EI (the Yamato Coastal Warm, Central Yamato Warm, and Eastern Japan Basin Coastal Warm eddy groups). Small eddies in the northern ES hardly resolved using the satellite altimetry data only, were not identified here and discussed with potential over-estimations of the mean L, H, R, EI, EKE, and APE. This study suggests that the ES mesoscale eddies 1) include newly identified groups such as the Hokkaido and the Yamato Rise Warm Eddies in addition to relatively well-known groups (e.g., the Ulleung Warm and the Dok Cold Eddies); 2) have a shorter L; smaller H, R, and lower EKE; and stronger EI and higher APE than those of the global ocean, and move following surface currents rather than propagating westward; and 3) show large spatial inhomogeneity among groups.

Kuroshio Observation Program: Towards Real-Time Monitoring the Japanese Coastal Waters

  • Ostrovskii, Alexander;Kaneko, Arata;Stuart-Menteth, Alice;Takeuchi, Kensuke;Yamagata, Toshio;Park, Jae-Hun;Zhu, Xiao Hua;Gohda, Noriaki;Ichikawa, Hiroshi;Ichikawa, Kaoru;Isobe, Atsuhiko;Konda, Masanori;Umatani, Shin-Ichiro
    • Ocean and Polar Research
    • /
    • v.23 no.2
    • /
    • pp.141-160
    • /
    • 2001
  • The challenge of predicting the Japanese coastal ocean motivated Frontier Observational Research System for Global Change (FORSGC) and the Japan Marine Science and Technology Center (JAMSTEC) to start a multiyear observational programme in the upstream Kuroshio in November 2000. This field effort, the Kuroshio Observation Program (KOP), should enable us to determine the barotropic and baroclinic components of the western boundary current system, thus, to better understand interactions of the currents with mesoscale eddies, the Kuroshio instabilities, and path bimodality. We, then, will be able to improve modeling predictability of the mesoscale, seasonal, and inter-annual processes in the midstream Kuroshio near the Japanese main islands by using this knowledge. The KOP is focused on an enhanced regional coverage of the sea surface height variability and the baroclinic structure of the mainstream Kuroshio in the East China Sea, the Ryukyu Current east of the Ryukyu's, and the Kuroshio recirculation. An attractive approach of the KOP is a development of a new data acquisition system via acoustic telemetry of the observational data. The monitoring system will provide observations for assimilation into extensive numerical models of the ocean circulation, targeting the real-time monitoring of the Japanese coastal waters.

  • PDF

Improvements in the Simulation of Sea Surface Wind Over the Complex Coastal Area-II: Data Assimilation Using LAPS (복잡 해안지역 해상풍 모의의 정확도 개선-II: LAPS를 사용한 자료동화)

  • Bae, Joo-Hyun;Kim, Yoo-Keun;Jeong, Ju-Hee;Kweon, Ji-Hye;Seo, Jang-Won;Kim, Yong-Sang
    • Journal of Environmental Science International
    • /
    • v.15 no.8
    • /
    • pp.745-757
    • /
    • 2006
  • We focus on the improvement of accuracy of sea surface wind over complex coastal area doling the warm season. Local Analysis Prediction System (LAPS) was used to improve the initial values in Mesoscale Meteorological model (MM5). During the clear summer days with weak wind speed, sea surface wind simulated with LAPS was compared with the case without LAPS. The results of modeling with LAPS has a good agreement mesoscale circulation such as mountain and valley winds on land and in case of modeling without LAPS, wind speed overestimated over the sea in the daytime. And the results of simulation with LAPS indicated similar wind speed values to observational data over the sea under influence of data assimilation using BUOY, QuikSCAT, and AMEBAS. The present study suggests that MM5 modelling with LAPS showed more improved results than that of without LAPS to simulate sea surface wind over the complex coastal area.

Effect of Model Resolution on The Flow Structures Near Mesoscale Eddies (수치모델 해상도가 중규모 와동 근처의 난류구조에 미치는 영향)

  • Chang, Yeon S.;Ahn, Kyungmo;Park, Young-Gyu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.2
    • /
    • pp.79-93
    • /
    • 2015
  • Three-dimensional structures of large ocean rings in the Gulf Stream region are investigated using the HYbrid Coordinate Ocean Model (HYCOM). Numerically simulated flow structures around four selected cyclonic and anticyclonic rings are compared with two different horizontal resolutions: $1/12^{\circ}$ and $1/48^{\circ}$. The vertical distributions of Lagrangian Coherent Structures (LCSs) are analyzed using Finite Size Lyapunov Exponent (FSLE) and Okubo-Weiss parameters (OW). Curtain-shaped FSLE ridges are found in all four rings with extensions of surface ridges throughout the water columns, indicating that horizontal stirring is dominant over vertical motions. Near the high-resolution rings, many small-scale flow structures with size O(1~10) km are observed while these features are rarely found near the low-resolution rings. These small-scale structures affect the flow pattern around the rings as flow particles move more randomly in the high-resolution models. The dispersion rates are also affected by these small-scale structures as the relative horizontal dispersion coefficients are larger for the high-resolution models. The absolute vertical dispersion rates are, however, lower for the high-resolution models, because the particles tend to move along inclined eddy orbits when the resolution is low and this increases the magnitude of absolute vertical dispersion. Since relative vertical dispersion can reduce this effect from the orbital trajectories of particles, it gives a more reasonable magnitude range than absolute dispersion, and so is recommended in estimating vertical dispersion rates.

Production of Future Wind Resource Map under Climate Change over Korea (기후변화를 고려한 한반도 미래 풍력자원 지도 생산)

  • Kim, Jin Young;Kim, Do Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.25 no.1
    • /
    • pp.3-8
    • /
    • 2017
  • In this study future wind resource maps have been produced under climate change scenario using ensemble regional climate model weather research and forecasting(WRF) for the period from 2045 to 2054(mid 21st century). Then various spatiotemporal analysis has been conducted in terms of monthly and diurnal. As a result, monthly variation(monsoon circulation) was larger than diurnal variation(land-sea circulation) throughout the South Korea. Strong wind area with high wind power energy was varied on months and regions. During whole years, strong wind with high wind resource was pronounced at cold(warm) months in particular Gangwon mountainous and coastal areas(southwestern coastal area) driven by strong northwesterly(southwesterly). Projected strong and weak wind were presented in January and September, respectively. Diurnal variation were large over inland and mountainous area while coastal area were small. This new monthly and diurnal variation would be useful to high resource area analysis and long-term operation of wind power according to wind variability in future.

A Numerical Study of Atmospheric Pollutant Dispersionon over South Korea on Sunny Summer Days (남한 지역에서 여름철 맑은 날의 대기 오염물 확산에 대한 수치적 연구)

  • 이태영;김승범
    • Journal of Environmental Science International
    • /
    • v.5 no.4
    • /
    • pp.411-427
    • /
    • 1996
  • A Lagrangian dispersion model has been developed to study the transport of atmospheric pollutants over the southern Korean peninsula on sunny summer days. A mesoscale atmospheric model has been employed to provide the wind fields and information for turbulent diffusion for the calculation of trajectories using a conditioned particle technique. The model has been applied to the simulation of the transport of atmospheric pollutants emitted from five sources in the coastal locations under various synoptic scale winds. Under calm synoptic scale condition, the particles emitted during daytime are mixed vertically and transported toward inland by sea-breeze, according to the model simulation. The particles are then transported upward at she sea-breeze front or by the upward motion over the mountain, and some particles show tendency of returning toward the coast by the return flow of the sea-breeze circulation. The particles are found to remain over the peninsula throughout the integration period under calm synoptic scale condition. When there is westerly synoptic scale winds the particles emitted in the west coast can reach the east coast within a day of faster depending on the speed. With a synoptic scale southerly wind of 5 m/s, most of the particles from the fine sources are advected toward inland during daytime. During nighttime, significant portion of particles released in the west coast remains over the land, while most particles released in the east coast move toward the sea to the east of the middle peninsula.

  • PDF