Browse > Article
http://dx.doi.org/10.7850/jkso.2019.24.2.267

Statistical Characteristics of East Sea Mesoscale Eddies Detected, Tracked, and Grouped Using Satellite Altimeter Data from 1993 to 2017  

LEE, KYUNGJAE (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
NAM, SUNGHYUN (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
KIM, YOUNG-GYU (Agency for Defense Development)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.24, no.2, 2019 , pp. 267-281 More about this Journal
Abstract
Energetic mesoscale eddies in the East Sea (ES) associated with strong mesoscale variability impacting circulation and environments were statistically characterized by analyzing satellite altimeter data collected during 1993-2017 and in-situ data obtained from four cruises conducted between 2015 and 2017. A total of 1,008 mesoscale eddies were detected, tracked, and identified and then classified into 27 groups characterized by mean lifetime (L, day), amplitude (H, m), radius (R, km), intensity per unit area (EI, $cm^2/s^2/km^2$), ellipticity (e), eddy kinetic energy (EKE, TJ), available potential energy (APE, TJ), and direction of movement. The center, boundary, and amplitude of mesoscale eddies identified from satellite altimeter data were compared to those from the in-situ observational data for the four cases, yielding uncertainties in the center position of 2-10 km, boundary position of 10-20 km, and amplitude of 0.6-5.9 cm. The mean L, H, R, EI, e, EKE, and APE of the ES mesoscale eddies during the total period are $95{\pm}104$ days, $3.5{\pm}1.5cm$, $39{\pm}6km$, $0.023{\pm}0.017cm^2/s^2/km^2$, $0.72{\pm}0.07$, $23{\pm}21TJ$, and $588{\pm}250TJ$, respectively. The ES mesoscale eddies tend to move following the mean surface current rather than propagating westward. The southern groups (south of the subpolar front) have a longer L, larger H, R, and higher EKE, APE; and stronger EI than those of the northern groups and tend to move a longer distance following surface currents. There are exceptions to the average characteristics, such as the quasi-stationary groups (the Wonsan Warm, Wonsan Cold, Western Japan Basin Warm, and Northern Subpolar Frontal Cold Eddy groups) and short-lived groups with a relatively larger H, higher EKE, and APE and stronger EI (the Yamato Coastal Warm, Central Yamato Warm, and Eastern Japan Basin Coastal Warm eddy groups). Small eddies in the northern ES hardly resolved using the satellite altimetry data only, were not identified here and discussed with potential over-estimations of the mean L, H, R, EI, EKE, and APE. This study suggests that the ES mesoscale eddies 1) include newly identified groups such as the Hokkaido and the Yamato Rise Warm Eddies in addition to relatively well-known groups (e.g., the Ulleung Warm and the Dok Cold Eddies); 2) have a shorter L; smaller H, R, and lower EKE; and stronger EI and higher APE than those of the global ocean, and move following surface currents rather than propagating westward; and 3) show large spatial inhomogeneity among groups.
Keywords
East Sea; Mesoscale eddies; Satellite altimetry; Eddy characteristics; Eddy movement; EKE; APE;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Park, J.H. and D.R. Watts, 2006. Internal tides in the southwestern Japan/East Sea, J. Phys. Oceanogr., 36: 22-34.   DOI
2 Prants, S.V., V.I. Ponomarev, M.V. Budyansky, M.Y. Uleysky and P.A. Fayman, 2015. Lagrangian analysis of the vertical structure of eddies simulated in the Japan Basin of the Japan/East Sea. Ocean Model., 86: 128-140.   DOI
3 Rhines, P.B., 1975. Waves and turbulence on a beta-plane. J. Fluid Mech., 69(3): 417-443.   DOI
4 Shin, H.R., C.W. Shin, C. Kim, S.K. Byun and S.C. Hwang, 2005. Movement and structural variation of warm eddy WE92 for three years in the western East/Japan Sea. Deep-sea Res. II, 52(11-13): 1742-1762.   DOI
5 Souza, J.M.A.C., C. de Boyer Montegut and P.Y. Le Traon, 2011. Comparison between three implementations of automatic identification algorithms for the quantification and characterization of mesoscale eddies in the South Atlantic Ocean. Ocean Sci., 7(3): 317-334.   DOI
6 Lee, D.K. and P.P. Niiler, 2010. Eddies in the southwestern East/Japan Sea. Deep-sea Res. I, 57(10): 1233-1242.   DOI
7 Takematsu, M., A.G. Ostrovski and Z. Nagano, 1999. Observations of eddies in the Japan Basin interior. J. Oceanogr. Soc. Japan, 55(2): 237-246.   DOI
8 Toba, Y., H. Kawamura, F. Yamashita and K. Hanawa, 1984. Structure of horizontal turbulence in the Japan Sea. In Ocean Hydrodynamics of the Japan and East China Seas, Elsevier, 39: 317-332.
9 Zu, T., D. Wang, C. Yan, I. Belkin, W. Zhuang and J. Chen, 2013. Evolution of an anticyclonic eddy southwest of Taiwan. Ocean Dyn., 63(5): 519-531.   DOI
10 Lim, J.H., S. Son, J.W. Park, J.H. Kwak, C.K. Kang, Y.B. Son and S.H. Lee, 2012. Enhanced biological activity by an anticyclonic warm eddy during early spring in the East Sea (Japan Sea) detected by the geostationary ocean color satellite. Ocean Sci. J., 47(3): 377-385.   DOI
11 Lorenz, E.N., 1955. Available potential energy and the maintenance of the general circulation. Tellus, 7(2): 157-167.   DOI
12 Nam, S. and J.H. Park, 2008. Semidiurnal internal tides off the east coast of Korea inferred from synthetic aperture radar images. Geophys. Res. Lett., 35(5): L05602.   DOI
13 Mitchell, D.A., W.J. Teague, M. Wimbush, D.R. Watts and G.G. Sutyrin, 2005. The Dok cold eddy. J. Phys. Oceangr., 35(3): 273-288.   DOI
14 Morimoto, A., T. Yanagi and A. Kaneko, 2000. Eddy field in the Japan Sea derived from satellite altimetric data. J. Oceanogr. Soc. Japan, 56(4): 449-462.   DOI
15 Morison, J., R. Andersen, N. Larson, E. D'Asaro and T. Boyd, 1994. The correction for thermal-lag effects in Sea-Bird CTD data. J. Atmos. Ocean. Tech., 11(4): 1151-1164.   DOI
16 Eden, C., 2007. Eddy length scales in the North Atlantic Ocean. J. Geophys. Res., 112(C6): C06004.
17 Nam, S., S.T. Yoon, J.H. Park, Y.H. Kim and K.I. Chang, 2016. Distinct characteristics of the intermediate water observed off the east coast of Korea during two contrasting years J. Geophys. Res., 121(7): 5050-5068.   DOI
18 Nan, F., Z. He, H. Zhou and D. Wang, 2011. Three long-lived anticyclonic eddies in the northern South China Sea. J. Geophys. Res., 116(C5): C05002.
19 Park, J.H. and D.R. Watts, 2005. Near-inertial oscillations interacting with mesoscale circulation in the southwestern Japan/East Sea. Geophys. Res. Lett., 32(10): L10611.   DOI
20 Faghmous, J.H., I. Frenger, Y. Yao, R. Warmka, A. Lindell and V. Kumar, 2015. A daily global mesoscale ocean eddy dataset from satellite altimetry. Sci. Data, 2: 150028.   DOI
21 Isoda, Y., 1996. Interaction of a warm eddy with the coastal current at the eastern boundary area in the Tsushima Current region. Cont. Shelf Res., 16(9): 1149-1163.   DOI
22 Hong, G.H., D.K. Lee, D.B. Yang, Y.I. Kim, J.H. Park and C.H. Park, 2013. Eddy-and wind-sustained moderate primary productivity in the temperate East Sea (Sea of Japan). Biogeosciences, 10(6): 10429-10458.   DOI
23 Ichiye, T. and K. Takano, 1988. Mesoscale eddies in the Japan Sea. La mer, 26(2): 69-75.
24 Isoda, Y., 1994. Warm eddy movements in the eastern Japan Sea. J. Oceanogr. Soc. Japan, 50(1): 1-15.   DOI
25 Kang, D. and E.N. Curchitser, 2015. Energetics of eddy-mean flow interactions in the Gulf Stream region. J. Phys. Oceanogr., 45(4): 1103-1120.   DOI
26 Kang, D. and O. Fringer, 2010. On the calculation of available potential energy in internal wave fields. J. Phys. Oceanogr., 40(11): 2539-2545.   DOI
27 김봉채, 최복경, 김병남, 2012. 동해에서 저주파 음파전파에 미치는 난수성 소용돌이의 영향. Ocean. Polar Res., 34(3): 325-335.   DOI
28 Kim, K., K.R. Kim, Y.G. Kim, Y.K. Cho, D.J. Kang, M. Takematsu and Y. Volkov, 2004. Water masses and decadal variability in the East Sea (Sea of Japan). Prog. Oceanogr., 61(2-4): 157-174.   DOI
29 Kim, Y.G., K. Kim, Y.K. Cho and H. Ossi, 2000. CTD data processing for CREAMS expeditions: Thermal-lag correction of Sea-Bird CTD. Ocean Sci. J., 35(4): 192-199.
30 Lee, D.K. and P.P. Niiler, 2005. The energetic surface circulation patterns of the Japan/East Sea. Deep-sea Res. II, 52(11-13): 1547-1563.   DOI
31 Chaigneau, A., A. Gizolme and C. Grados, 2008. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Prog. Oceanogr., 79(2-4): 106-119.   DOI
32 박경애, 박지은, 최병주, 변도성, 이은일, 2013. 해양관측을 통해 획득한 과학적 지식에 기반한 과학교과서 동해 해류도. 한국해양학회지 바다, 18(4): 234-265.
33 Boning, C.W. and R.G. Budich, 1992. Eddy dynamics in a primitive equation model: Sensitivity to horizontal resolution and friction. J. Phys. Oceanogr., 22(4): 361-381.   DOI
34 Byun, S.S., J.J. Park, K.I. Chang and R.W. Schmitt, 2010. Observation of near-inertial wave reflections within the thermostad layer of an anticyclonic mesoscale eddy. Geophys. Res. Lett., 37(1): L01606.   DOI
35 Chang, K.I., C.I. Zhang, C. Park, D.J. Kang, S.J. Ju and S.H. Lee, 2016. Oceanography of the East Sea (Japan Sea). Edited by Wimbush, M., Springer, 460.
36 Chelton, D.B., M.G. Schlax and R.M. Samelson, 2011. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91(2): 167-216.   DOI
37 Chen, G., Y. Hou and X. Chu, 2011. Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure. J. Geophys. Res., 116(C6): C06018.
38 Chen, G., D. Wang and Y. Hou, 2012. The features and interannual variability mechanism of mesoscale eddies in the Bay of Bengal. Cont. Shelf Res., 47: 178-185.   DOI