• Title/Summary/Keyword: Mesodinium rubrum

Search Result 14, Processing Time 0.021 seconds

Variations of Species Composition of Early Feeding Organisms Through Nature Mixed Culture (자연혼합배양에 의한 초기 먹이생물의 종 조성 변화)

  • Jung, Min-Min;Oh, Bong-Sae;Ku, Hag-Dong;Lee, Chang-Hoon;Yang, Moon-Ho;Moon, Tae-Seok;Kim, Sam-Yeon;Kim, Hyeung-Sin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • We were successfully reared young marine ornamental larva fish in a unique process of microalgae blooming culture tank. The marine fish larva was grown and survived in this method. Generally, we called this method as natural mixed culture. Observed planktonic microalgae were 34 species with 19 diatoms (Detonula pumila, Nitzschia sp., Fragilaria oceanica, Chaetoceros curvisetus, Stephanodiscus sp., Chaetoceros decipies, Chaetoceros sp., Thalassiosira rotula, Eucampia zodiacus, Diploneis splendica, Nitzschia longissima, Surirella cuneata, Asterionella glacialis, Nitzschia spp., Chaetoceros debile, Thalassionema nitzschioides, Nitzschia closterium, Skeletonema costatum and Licmophora sp.), 14 flagellates (Euglena, sp., Gonyaulax sp., Pyramimonas sp., Protoperidinium sp., Eutreptia sp., Parapedinella sp., unidentified micrc-flagellate, Gyrodinium sp., Scrippsiell trochoidea, Gymnodinium sanguineum, Chrysochromulina sp., Gymnodinium sp., Prorocentrum triestinum and Micromonas sp.) and 1 ciliate (Mesodinium rubrum) in this culture tank. Dominant microalgae were Chrysochromulina sp. during the larval rearing periods. Blooming condition maintained continuously and stably from 10 to 60 days in this microcosm.

Importance of the Mixotrophic Ciliate Myrionecta rubra in Marine Ecosystems (해양 생태계 내에서 혼합영양 섬모류 Myrionecta rubra의 중요성)

  • Myung, Geum-Og;Kim, Hyung-Seop;Jang, Keon-Gang;Park, Jong-Woo;Yih, Won-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.178-185
    • /
    • 2007
  • Myrionecta rubra Jankowski 1976(=Mesodinium rubrum Lohmann 1908), a mixotrophic ciliate, is very common and often causes recurrent red tides in diverse marine environments. Since the report on the first laboratory strain of this species in 2000, papers on its novel ecological role and evolutionary importance have been high lighted. This review paper is prepared to promote the de novo recognition M. rubra as a marine mixotrophic species. M. rubra is a ciliate which is able to photosynthesize using plastids originated from cryptophyte (including Teleaulax sp. and Geminigera sp.) prey cells (i.e. kleptoplastidic ciliate). Recently, novel bacterivory of M. rubra was firstly reported. Thus, the nutritional modes of M. rubra include photosynthesis, bacterivory, and algivory. In turn, M. rubra was reported as the prey species of metazoan predators such as calanoid copepods, mysids, larvae of ctenophore and anchovy, and spats of bivalves. In addition, it was reported that dinoflagellate Dinophysis causing diarrhetic shellfish poisoning is one among the predators of M. rubra. Thus, M. rubra, a marine mixotrophic ciliate, may play a pivotal role as a common linking ciliate for the flow of energy and organic material in pelagic food webs.

Five Alexandrium species lacking mixotrophic ability

  • Lim, An Suk;Jeong, Hae Jin;Ok, Jin Hee
    • ALGAE
    • /
    • v.34 no.4
    • /
    • pp.289-301
    • /
    • 2019
  • Mixotrophy in marine organisms is an important aspect of ecology and evolution. The discovery of mixotrophic abilities in phototrophic dinoflagellates alters our understanding of the dynamics of red tides. In the phototrophic dinoflagellate genus Alexandrium, some species are mixotrophic, but others are exclusively autotrophic. There are differences in the ecological roles of autotrophic and mixotrophic Alexandrium in marine food webs. However, of the 34 known Alexandrium species, the mixotrophic ability of >20 species has yet to be explored. In this study, the mixotrophic capabilities of Alexandrium insuetum CCMP2082, Alexandrium mediterraneum CCMP3433, Alexandrium pacificum CCMP3434, Alexandrium tamutum ATSH1609, and Alexandrium margalefii CAWD10 were investigated by providing each species with 22 diverse prey items including bacterium-sized microbeads (1 ㎛), the cyanobacterium Synechococcus sp., algal prey species, and the ciliate Mesodinium rubrum. None of the 5 Alexandrium species fed on any of the prey items. These results increase the number of Alexandrium species lacking mixotrophic abilities to 9, compared to the 7 known mixotrophic Alexandrium species. Furthermore, the Alexandrium phylogenetic tree based on the large subunit ribosomal DNA contained 3 large clades, each of which had species with and without mixotrophic abilities. Thus, the acquisition or loss of mixotrophic abilities in Alexandrium might readily occur.

The Seasonal Variation of Microbial Community in the Eutrophic Brackish Water of Lake Shihwa (시화호 주변 부영양화 기수유역의 미소생물 군집의 계절적 변화)

  • Baek, Seung-Ho;You, Kai;Park, Bum-Soo;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.55-68
    • /
    • 2010
  • The seasonal variation of microbial community, based on the bacteria, heterotrophic nanoflagellates (HNF), phytoplankton and ciliates, was investigated at three sites in the eutrophic brackish water of Lake Shihwa and its adjacent areas from May 2007 through May 2008. At the upstream-region site St. 1, compared to the other two sites, significantly lower salinities and higher concentrations of nutrients and chlorophyll $\alpha$ (Chl. $\alpha$) were recorded. The annual average abundances of bacteria at St. 1, St. 2 and St. 3 were $6.8{\times}10^6$, $7.4{\times}10^6$ and $4.6{\times}10^6\;cells\;mL^{-1}$, respectively. As for the annual average concentrations of HNF, $19{\times}10^2$, $6.7{\times}10^2$ and $5.9{\times}10^2\;cells\;mL^{-1}$, were recorded in St. 1, St. 2 and St. 3 respectively. The highest ciliate abundance appeared at St. 1 on 29 April, 2008 and in which, 99% were autotrophic ciliate Mesodinium rubrum (Myrionecta rubra). Significant linear correlations between the biomass of bacteria and Chl. $\alpha$ were found, however, no significant relationships between ciliates abudance/biomass and their prey organisms were detected in all three sites, implying relatively low energy transfer efficiencies between them. These results indicated that the trophic relationship between ciliates and their prey organisms in the microbial community might be influenced by indirect route since higher trophic level organisms did not directly correlate to those of lower trophic level, although high primary productions were detected in the eutrophic brackish water of Lake Shihwa and its adjacent areas.