• 제목/요약/키워드: Mesoderm

검색결과 46건 처리시간 0.019초

Mesodermal repression of single-minded in Drosophila embryo is mediated by a cluster of Snail-binding sites proximal to the early promoter

  • Park, Kye-Won;Hong, Joung-Woo
    • BMB Reports
    • /
    • 제45권10호
    • /
    • pp.577-582
    • /
    • 2012
  • single-minded (sim) is a master regulatory gene that directs differentiation in the central nervous system during Drosophila embryogenesis. Recent identification of the mesectoderm enhancer (MSE) of sim has led to the hypothesis that two Snail (Sna)-binding sites in the MSE may repress sim expression in the presumptive mesoderm. We provide evidence here that three Sna-binding sites proximal to the sim promoter, but not those of the MSE, are responsible for the mesodermal repression of sim in vivo. Using transgenic embryos injected with lacZ transgenes, we showed that sim repression in the mesoderm requires the three promoter-proximal Sna-binding sites. These results suggest that Sna represses the mesectodermal expression of sim by directly repressing the nearby promoter, and not by quenching adjacent transcriptional activators in the MSE. These data also showed how the MSE, lacking the three proximal Sna-binding sites, reproduced the endogenous pattern of sim expression in transgenic embryos.

Expression patterns of PRDM10 during mouse embryonic development

  • Park, Jin-Ah;Kim, Keun-Cheol
    • BMB Reports
    • /
    • 제43권1호
    • /
    • pp.29-33
    • /
    • 2010
  • It is well known that PR/SET family members participate in transcriptional regulation via chromatin remodeling. PRDM10 might play an essential role in gene expression, but no such evidence has been observed so far. To assess PRDM10 expression at various stages of mouse development, we performed immunohistochemistry using available PRDM10 antibody. Embryos were obtained from three distinct developmental stages. At E8.5, PRDM10 expression was concentrated in the mesodermal and neural crest populations. As embryogenesis proceeded further to E13.5, PRMD10 expression was mainly in mesoderm-derived tissues such as somites and neural crest-derived populations such as the facial skeleton. This expression pattern was consistently maintained to the fetal growth period E16.5 and adult mouse, suggesting that PRDM10 may function in tissue differentiation. Our study revealed that PRDM10 might be a transcriptional regulator for normal tissue differentiation during mouse embryonic development.

Goosecoid Controls Neuroectoderm Specification via Dual Circuits of Direct Repression and Indirect Stimulation in Xenopus Embryos

  • Umair, Zobia;Kumar, Vijay;Goutam, Ravi Shankar;Kumar, Shiv;Lee, Unjoo;Kim, Jaebong
    • Molecules and Cells
    • /
    • 제44권10호
    • /
    • pp.723-735
    • /
    • 2021
  • Spemann organizer is a center of dorsal mesoderm and itself retains the mesoderm character, but it has a stimulatory role for neighboring ectoderm cells in becoming neuroectoderm in gastrula embryos. Goosecoid (Gsc) overexpression in ventral region promotes secondary axis formation including neural tissues, but the role of gsc in neural specification could be indirect. We examined the neural inhibitory and stimulatory roles of gsc in the same cell and neighboring cells contexts. In the animal cap explant system, Gsc overexpression inhibited expression of neural specific genes including foxd4l1.1, zic3, ncam, and neurod. Genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) and promoter analysis of early neural genes of foxd4l1.1 and zic3 were performed to show that the neural inhibitory mode of gsc was direct. Site-directed mutagenesis and serially deleted construct studies of foxd4l1.1 promoter revealed that Gsc directly binds within the foxd4l1.1 promoter to repress its expression. Conjugation assay of animal cap explants was also performed to demonstrate an indirect neural stimulatory role for gsc. The genes for secretory molecules, Chordin and Noggin, were up-regulated in gsc injected cells with the neural fate only achieved in gsc uninjected neighboring cells. These experiments suggested that gsc regulates neuroectoderm formation negatively when expressed in the same cell and positively in neighboring cells via soluble factors. One is a direct suppressive circuit of neural genes in gsc expressing mesoderm cells and the other is an indirect stimulatory circuit for neurogenesis in neighboring ectoderm cells via secreted BMP antagonizers.

BMP4 처리에 의한 인간 배아줄기세포 유래 KDR 양성 중배엽성 세포군의 분화 양상 조사 (Identification and Characterization of a KDR-positive Mesoderm Population Derived from Human Embryonic Stem Cells Post BMP4 Treatment)

  • 김정모;손온주;조윤정;이재호;정형민
    • Reproductive and Developmental Biology
    • /
    • 제35권1호
    • /
    • pp.9-15
    • /
    • 2011
  • The functional cardiovascular system is comprised of distinct mesoderm-derived lineages including endothelial cells, vascular smooth muscle cells and other mesenchymal cells. Recent studies in the human embryonic stem cell differentiation model have provided evidence indicating that these cell lineages are developed from the common progenitors such as hemangioblasts and cardiovascular progenitor cells. Also, the studies have suggested that these progenitors have a common primordial progenitor, which expresses KDR (human Flk-1, also known as VEGFR2, CD309). We demonstrate here that sustained activation of BMP4 (bone morphogenetic protein 4) in hESC line, CHA15 hESC results in $KDR^+$ mesoderm specific differentiation. To determine whether the $KDR^+$ population derived from hESCs enhances potential to differentiate along multipotential mesodermal lineages than undifferentiated hESCs, we analyzed the development of the mesodermal cell types in human embryonic stem cell differentiation cultures. In embryoid body (EB) differentiation culture conditions, we identified an increased expression of $KDR^+$ population from BMP4-stimulated hESC-derived EBs. After induction with additional growth factors, the $KDR^+$ population sorted from hESCs-derived EBs displays mesenchymal, endothelial and vascular smooth muscle potential in matrix-coated monolayer culture systems. The populations plated in monolayer cultures expressed increased levels of related markers and exhibit a stable/homologous phenotype in culture terms. In conclusion, we demonstrate that the $KDR^+$ population is stably isolated from CHA15 hESC-derived EBs using BMP4 and growth factors, and sorted $KDR^+$ population can be utilized to generate multipotential mesodermal progenitors in vitro, which can be further differentiated into cardiovascular specific cells.

Different Point of View to the Autoimmune Diseases and Treatment with Acupuncture

  • Inanc, Betul Battaloglu
    • 대한약침학회지
    • /
    • 제23권4호
    • /
    • pp.187-193
    • /
    • 2020
  • Objectives: It was aimed to investigate the basic action mechanism of the autoimmune diseases and common features of all diseases. Autoimmune disease are classified organ specific and systemic. Methods: These diseases are seen systemic and disease start locations, origins seem differently. This makes learning and understanding difficult. Autoimmune diseases investigated for easier understanding. It was noticed that, autoimmune diseases' starting places are specific and same all of them. This remarkable point is very important for acupuncture also. So; whole literatüre was researched and important point was found. Results: Whole autoimmune diseases are attack to mesodermal layers and mesodermal origin organs of the body's. The common property of all these disease are same; Diseases start from the mesoderm and mesodermal layer even though their organ origins' belongs to different germ layer. From this point of view, we were able to classify autoimmune diseases simply and it was planned how can we effect body in this context with acupuncture. Conclusion: And, when immunity comes into question, induction of adaptive immunity is depend on antigen presentation to T cells and this situation take place in the lymph node (LN) and also in the skin.When we sank the acupuncture needle into skin, signals create and start mesodermal contacts, during this time mesenchymal origin' autoimmune cells are regulated with this signals.

신생아 호흡곤란을 유발한 비인강 기형종 1례 (A Case of Airway Obstruction Secondary to Neonatal Nasopharyngeal Dermoid Teratoma)

  • 김민식;선동일;이정학;조승호
    • 대한기관식도과학회지
    • /
    • 제5권1호
    • /
    • pp.90-95
    • /
    • 1999
  • Dermoids are rare disease which arise during embryogenesis. They are the most common variety of teratomas occurring in the head and neck region and most arsies in the nasopharynx or oropharynx. They are invariably benign and derived from only two germinal layers, ectoderm and mesoderm. They usually present as repiratory distress and swallowing difficulty at or soon after birth. Treatment consists of surgical resection. We recently experienced a case of a neonatal nasopharyngeal dermoid which led to severe airway obstruction and feeding difficulty and necessitated the endotracheal intubation.

  • PDF

Comparative Analysis of the Developmental Competence of Three Human Embryonic Stem Cell Lines in Vitro

  • Kim, Sung-Eun;Kim, Byung-Kak;Gil, Jung-Eun;Kim, Suel-Kee;Kim, Jong-Hoon
    • Molecules and Cells
    • /
    • 제23권1호
    • /
    • pp.49-56
    • /
    • 2007
  • One of the goals of stem cell technology is to control the differentiation of human embryonic stem cells (hESCs), thereby generating large numbers of specific cell types for many applications including cell replacement therapy. Although individual hESC lines resemble each other in expressing pluripotency markers and telomerase activity, it is not clear whether they are equivalent in their developmental potential in vitro. We compared the developmental competence of three hESC lines (HSF6, Miz-hES4, and Miz-hES6). All three generated the three embryonic germ layers, extraembryonic tissues, and primordial germ cells during embryoid body (EB) formation. However, HSF6 and Miz-hES6 readily formed neuroectoderm, whereas Miz-hES4 differentiated preferentially into mesoderm and endoderm. Upon terminal differentiation, HSF6 and Miz-hES6 produced mainly neuronal cells whereas Miz-hES4 mainly formed mesendodermal derivatives, including endothelial cells, leukocyte progenitors, hepatocytes, and pancreatic cells. Our observations suggest that independently-derived hESCs may differ in their developmental potential.