• Title/Summary/Keyword: Mesh-up

Search Result 338, Processing Time 0.024 seconds

Use of Adaptive Meshes in Simulation of Combustion Phenomena

  • Yi, Sang-Chul;Koo, Sang-Man
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06b
    • /
    • pp.285-309
    • /
    • 1996
  • Non oxide ceramics such as nitrides of transition metals have shown significant potential for future economic impact, in diverse applications in ceramic, aerospace and electronic industries, as refractory products, abrasives and cutting tools, aircraft components, and semi-conductor substrates amid others. Combustion synthesis has become an attractive alternative to the conventional furnace technology to produce these materials cheaply, faster and at a higher level of purity. However he process os highly exothermic and manifests complex dynamics due to its strongly non-linear nature. In order to develop an understanding of this process and to study the effect of operational parameters on the final outcome, numerical modeling is necessary, which would generated essential knowledge to help scale-up the process. the model is based on a system of parabolic-hyperbolic partial differential equations representing the heat, mass and momentum conservation relations. The model also takes into account structural change due to sintering and volumetric expansion, and their effect on the transport properties of the system. The solutions of these equations exhibit steep moving spatial gradients in the form of reaction fronts, propagating in space with variable velocity, which gives rise to varying time scales. To cope with the possibility of extremely abrupt changes in the values of the solution over very short distances, adaptive mesh techniques can be applied to resolve the high activity regions by ordering grid points in appropriate places. To avoid a control volume formulation of the solution of partial differential equations, a simple orthogonal, adaptive-mesh technique is employed. This involves separate adaptation in the x and y directions. Through simple analysis and numerical examples, the adaptive mesh is shown to give significant increase in accuracy in the computations.

  • PDF

Impact of openings on the structural performance of ferrocement I-Beams under flexural loads

  • Yousry B.I. Shaheen;Ghada M. Hekal;Ayman M. Elshaboury;Ashraf M. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.371-390
    • /
    • 2024
  • Investigating the impact of openings on the structural behavior of ferrocement I-beams with two distinct types of reinforcing metallic and non-metallic meshes is the primary goal of the current study. Up until failure, eight 250x200x2200 mm reinforced concrete I-beams were tested under flexural loadings. Depending on the kind of meshes used for reinforcement, the beams are split into two series. A control I-beam with no openings and three beams with one, two, and three openings, respectively, are found in each series. The two series are reinforced with three layers of welded steel meshes and two layers of tensar meshes, respectively, in order to maintain a constant reinforcement ratio. Structural parameters of investigated beams, including first crack, ultimate load, deflection, ductility index, energy absorption, strain characteristics, crack pattern, and failure mode were reported. The number of mesh layers, the volume fraction of reinforcement, and the kind of reinforcing materials are the primary factors that vary. This article presents the outcomes of a study that examined the experimental and numerical performance of ferrocement reinforced concrete I-beams with and without openings reinforced with welded steel mesh and tensar mesh separately. Utilizing ANSYS-16.0 software, nonlinear finite element analysis (NLFEA) was applied to illustrate how composite RC I-beams with openings behaved. In addition, a parametric study is conducted to explore the variables that can most significantly impact the mechanical behavior of the proposed model, such as the number of openings. The FE simulations produced an acceptable degree of experimental value estimation, as demonstrated by the obtained experimental and numerical results. It is also noteworthy to demonstrate that the strength gained by specimens without openings reinforced with tensar meshes was, on average, 22% less than that of specimens reinforced with welded steel meshes. For specimens with openings, this value is become on average 10%.

Effects of Mesh Size in a Flat Evaporator and Condenser Cooling Capacity on the Thermal Performance of a Capillary Pumped Loop

  • Boo, Joon-Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.121-129
    • /
    • 2000
  • The thermal performance of a flat evaporator for capillary pumped loop (CPL) applications was investigated. Two to four layers of coarse wire screen wicks were placed onto the heated surface to provide irregular passages for vapor flow. The evaporator and condenser were separated by a distance of 1.2 m and connected by individual liquid and vapor lines. The wall material was copper and the working fluid was ethanol. The experimental facility utilized a combination of capillary and gravitational forces for liquid return, and distribution over the evaporator surface. The tubing used for vapor and liquid lines was 9.35 mm or less in diameter and heat was removed from the condenser by convection of air. A heat flux of up to $4.9{\times}10^4$ $W/m^2$ was applied to a flat evaporator having dimensions of 100 mm by 200 mm, 20 mm thick. The thermal resistance of the system as well as the temperature characteristics of the system was investigated as the evaporator heat flux and the condenser cooling capacity varied. The performance of the evaporator and effect of condenser cooling capacity were analyzed and discussed.

  • PDF

Electromagnetic Interference Shielding Effectiveness of Fiber Reinforced Composites Hybrid Conductive Filler (하이브리드 전도성 Filler 섬유강화 복합재료의 전자파 차폐효과)

  • Han, Gil-Young;Song, Dong-Han;Bae, Ji-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.35-39
    • /
    • 2009
  • The main objective of this study was to investigate fiber reinforced composite materials (FRCM) with electromagnetic shielding characteristics using aluminum (Al) film and copper (Cu) meshes. This study investigated the electromagnetic interference (EMI) shielding effectiveness (SE) of fiber reinforced composites filled with Al film, Cu meshes, and nano carbon black as hybrid conductive fillers to provide the electromagnetic shielding property of the fiber reinforced composites. The coaxial transmission line method of ASTM D 4935-89 was used to measure the EMI shielding effectiveness of composites in the frequency range of 300 MHz to 1.5 GHz. The variations of SE of FRCM with Al film, fine Cu, and general Cu meshes are described. The results indicate that the FRCM having Al film exhibited up to 75 dB of SE at 1.5 GHz.

Design & Animal Experiment of Artificial Oxygenator (인공폐(산화기) 제작과 실험)

  • 김형묵
    • Journal of Chest Surgery
    • /
    • v.15 no.2
    • /
    • pp.259-265
    • /
    • 1982
  • We have designed a new type of bubble oxygenator (KOREA-KIM VENOTHERM OXYGENATOR) made of PVC sheet and deforming mesh incorporated in the heat exchanger, and evaluated in experimental animal for the analysis of it`s efficiency. The Oxygenator has low priming volume with high flow rate up to 6 L/rain, and efficiency of heat exchanger was excellent as 1-$1.5^{\circ}C.$ using total cardiopulmonary bypass method under moderate to deep hypothermia. Average priming volume of 1317 ml with 30% hemodilution method was perfused with an average of 1.1-3.0 L/min.$M^2$of arterial blood and pure oxygen at a rate of 2-3.4 L/min for 49.6 minutes continuously in average. During total cardiopulmonary bypass, average $PaO_2$ was $159.8{\pm}60$mmHg, $PaCO_2$ $41.0{\pm}3$mmHg respectively under $SaO_2$ over 96% with systolic arterial pressure of 70 mmHg and CVP of 5-10 cm$H_2O$. Plasma free Hemoglobin was $7.0{\pm}4$ mg/dl with 25% drop of hemoglobin and hematocrit at the end of cardiopulmonary bypass. This KKV Oxygenator was observed to have excellent capabillty of oxygen and carbon dioxide gas transfer with small amount of blood trauma, and the efficiency of heat exchanger was satisfactory during cooling and rewarming of the bubbled blood. Disadvantages have included the somewhat poor deforming effect due to loose PVC fiber mesh, the extracompact character of Teflon filters, and the rough inner surface of the heat exchanger copper pipes.

  • PDF

Swing Noise Reduction of an Excavator (굴삭기의 선회소음 저감)

  • Lee, Soyeon;Won, Hong-In;Kim, Woohyung;Kim, Seongjae;Kim, Indong;Chung, Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.6
    • /
    • pp.391-398
    • /
    • 2015
  • The swing noise of an excavator is reduced in this study. When an excavator is under a swing motion, it produces the annoying noise which is required to be reduced. To identify the characteristics of the swing noise, the signals of noise and vibration from an excavator are measured during the swing motion. From the variation of the driving motor speed, the noise and vibration signals are picked up and plotted in the waterfall plots. From the waterfall plots, we identify the frequency components corresponding to the driving motor frequency, the gear mesh frequency of the planetary gear, and their harmonics. In addition, the natural frequencies and modes of the center frame are extracted by using the experimental modal test. It is found that the swing noise is amplified when the gear mesh frequencies coincide with the natural frequencies of the center frame. To reduce the swing noise, the structural modification is performed to the center frame. Finally, it is observed that the noise is considerably reduced by the structural modification.

Structural performance of ferrocement beams reinforced with composite materials

  • Shaheen, Yousry B.I.;Eltaly, Boshra A.;Abdul-Fataha, Samer G.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.817-834
    • /
    • 2014
  • An experimental program was designed in the current work to examine the structural behavior of ferrocement beams reinforced with composite materials under three point loadings up to failure. The experimental program comprised casting and testing of twelve ferrocement beams having the dimensions of 120 mm width, 200 mm depth and 1600 mm length. The twelve beams were different in the type of reinforcements; steel bars, traditional wire meshes (welded and expanded wire meshes) and composite materials (fiberglass wire meshes and polypropylene wire meshes). The flexural performances of the all tested beams in terms of strength, ductility, cracking behavior and energy absorption were investigated. Also all the tested beams were simulated using ANSYS program. The results of the experimental tests concluded that the beam with fiber glass meshes gives the lowest first crack load and ultimate load. The ferrocement beam reinforced with four layers of welded wire meshes has better structural behavior than those beams reinforced with other types of wire meshes. Also the beams reinforced with metal wire meshes give smaller cracks width in comparing with those reinforced with non-metal wire meshes. Also the Finite Element (FE) simulations gave good results comparing with the experimental results.

Review of Experimental Tracheal Reconstruction (실험적 기관 재건술에 대한 고찰)

  • 성숙환;김용희
    • Korean Journal of Bronchoesophagology
    • /
    • v.7 no.2
    • /
    • pp.128-139
    • /
    • 2001
  • The purpose of this study was to review the literatures of experimental tracheal reconstruction. Although there have been significant advancements in the surgical treatment of the long circumferential tracheal injuries, there still has been a difficult problem with high morbidity and mortality. The method for tracheal reconstruction after circumferential resection is preferred end-to-end anastomosis for defects up to 6 cm in length, but larger tracheal defects require the use of tracheal allograft, various artificial prosthesis or autogenous organs. The tracheal allotransplantation has been widely used as there was significantly improved the method of surgical technique, preservation and immunosuppression. But it has been limited by a number of factors such as few donor, limited use of immunosuppressant, delayed revascularization and re-epitheliazation. Experimental studies on the tracheal prosthesis have a long history and they tried to use silicone, polytetrafluoroethylene, polypropylene mesh, Dacron, Marlex mesh, external or internal stents. Other experimental studies were reported the use of autogenous tissues that were cartilage. jejunum, aorta, skin, muscle, periostium or esophagus. But a great variety of these protheses have been resulted unsatisfactory in a significant Proportion of cases. Alternatively, the tissue-engineering technique has showed a new approach to reconstruct trachea and much progress in tissue-engineering bas been made recently. In conclusion, although the tracheal allotransplantation and the use of prosthesis and allograft have been reported a lot of limitation to overcome, we could sooner expect good result of ideal tracheal prosthesis.

  • PDF

Modeling of CNG Direct Injection using Gaseous Sphere Injection Model (기체구 분사 모델을 이용한 CNG 직접분사식 인젝터 분사 수치해석 기법)

  • Choi, Mingi;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.47-52
    • /
    • 2016
  • This paper describes the modeling of CNG direct injection using gaseous sphere injection model. Simulation of CNG direct injection does not need break up and evaporation model compared to that of liquid fuel injection. And very fine mesh is needed near the injector nozzle to resolve the inflow boundary. Therefore it takes long computation time for gaseous fuel injection simulation. However, simulation of CNG direct injection could be performed with the coarse mesh using gaseous sphere injection model. This model was integrated in KIVA-3V code and RNG $k-{\varepsilon}$ turbulence model needs to be modified because this model tends to over-predict gas jet diffusion. Furthermore, we preformed experiments of gaseous fuel injection using PLIF (planar laser induced fluorescence)method. Gaseous fuel injection model was validated against experiment data. The simulation results agreed well with the experiment results. Therefore gaseous sphere injection model has the reliability about gaseous fuel direct injection. And this model was predicted well a general tendency of gaseous fuel injection.

Electrochemical Properties of Lithium Sulfur Battery with Silicon Anodes Lithiated by Direct Contact Method

  • Kim, Hyung Sun;Jeong, Tae-Gyung;Kim, Yong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.228-233
    • /
    • 2016
  • It is hard to employ the carbon materials or the lithium metal foil for the anode of lithium sulfur batteries because of the poor passivation in ether-based electrolytes and the formation of lithium dendrites, respectively. Herein, we investigated the electrochemical characteristics of lithium sulfur batteries with lithiated silicon anode in the liquid electrolytes based on ether solvents. The silicon anodes were lithiated by direct contact with lithium foil in a 1M lithium bis(trifluoromethane sulfonyl) imide (LiTFSI) solution in 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOL) at a volume ratio of 1:1. They were readily lithiated up to ~40% of their theoretical capacity with a 30 min contact time. In particular, the carbon mesh reported in our previous work was employed in order to maximize the performance by capturing the dissolved polysulfide in sulfur cathode. The reversible specific capacity of the lithiated silicon-sulfur batteries with carbon mesh was 1,129 mAh/g during the first cycle, and was maintained at 297 mAh/g even after 50 cycles at 0.2 C, without any problems of poor passivation or lithium dendrite formation.