• Title/Summary/Keyword: Mesh number

Search Result 631, Processing Time 0.03 seconds

Multi-resolutional Representation of B-rep Model Using Feature Conversion (특징형상 변환을 이용한 B-rep모델의 다중해상도 구현)

  • 최동혁;김태완;이건우
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.2
    • /
    • pp.121-130
    • /
    • 2002
  • The concept of Level Of Detail (LOD) was introduced and has been used to enhance display performance and to carry out certain engineering analysis effectively. We would like to use an adequate complexity level for each geometric model depending on specific engineering needs and purposes. Solid modeling systems are widely used in industry, and are applied to advanced applications such as virtual assembly. In addition, as the demand to share these engineering tasks through networks is emerging, the problem of building a solid model of an appropriate resolution to a given application becomes a matter of great necessity. However, current researches are mostly focused on triangular mesh models and various operators to reduce the number of triangles. So we are working on the multi-resolution of the solid model itself, rather than that of the triangular mesh model. In this paper, we propose multi-resolution representation of B-rep model by reordering and converting design features into an enclosing volume and subtractive features.

Convergence studies on static and dynamic analysis of beams by using the U-transformation method and finite difference method

  • Yang, Y.;Cai, M.;Liu, J.K.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.4
    • /
    • pp.383-392
    • /
    • 2009
  • The static and dynamic analyses of simply supported beams are studied by using the U-transformation method and the finite difference method. When the beam is divided into the mesh of equal elements, the mesh may be treated as a periodic structure. After an equivalent cyclic periodic system is established, the difference governing equation for such an equivalent system can be uncoupled by applying the U-transformation. Therefore, a set of single-degree-of-freedom equations is formed. These equations can be used to obtain exact analytical solutions of the deflections, bending moments, buckling loads, natural frequencies and dynamic responses of the beam subjected to particular loads or excitations. When the number of elements approaches to infinity, the exact error expression and the exact convergence rates of the difference solutions are obtained. These exact results cannot be easily derived if other methods are used instead.

Cell Based CMFD Formulation for Acceleration of Whole-core Method of Characteristics Calculations

  • Cho, Jin-Young;Joo, Han-Gyu;Kim, Kang-Seog;Zee, Sung-Quun
    • Nuclear Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.250-258
    • /
    • 2002
  • This Paper is to apply the well-established coarse mesh finite difference(CMFD) method to the method of characteristics(MOC) transport calculation as an acceleration scheme. The CMFD problem is first formulated at the pin-cell level with the multi-group structure To solve the cell- based multi-group CMFD problem efficiently, a two-group CMFD formulation is also derived from the multi-group CMFD formulation. The performance of the CMFD acceleration is examined for three test problems with different sizes including a realistic quarter core PWR problem. The CMFD formulation provides a significant reduction in the number of ray tracings and thus only about 9 ray tracing iterations are enough for the realistic problem. In computing time, the CMFD accelerated case is about two or three times faster than the coarse-mesh rebalancing(CMR) accelerated case.

Analytic Throughput Model for Network Coded TCP in Wireless Mesh Networks

  • Zhang, Sanfeng;Lan, Xiang;Li, Shuang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3110-3125
    • /
    • 2014
  • Network coding improves TCP's performance in lossy wireless networks. However, the complex congestion window evolution of network coded TCP (TCP-NC) makes the analysis of end-to-end throughput challenging. This paper analyzes the evolutionary process of TCP-NC against lossy links. An analytic model is established by applying a two-dimensional Markov chain. With maximum window size, end-to-end erasure rate and redundancy parameter as input parameters, the analytic model can reflect window evolution and calculate end-to-end throughput of TCP-NC precisely. The key point of our model is that by the novel definition of the states of Markov chain, both the number of related states and the computation complexity are substantially reduced. Our work helps to understand the factors that affect TCP-NC's performance and lay the foundation of its optimization. Extensive simulations on NS2 show that the analytic model features fairly high accuracy.

Further validation of the hybrid particle-mesh method for vortex shedding flow simulations

  • Lee, Seung-Jae;Lee, Jun-Hyeok;Suh, Jung-Chun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.6
    • /
    • pp.1034-1043
    • /
    • 2015
  • This is the continuation of a numerical study on vortex shedding from a blunt trailing-edge of a hydrofoil. In our previous work (Lee et al., 2015), numerical schemes for efficient computations were successfully implemented; i.e. multiple domains, the approximation of domain boundary conditions using cubic spline functions, and particle-based domain decomposition for better load balancing. In this study, numerical results through a hybrid particle-mesh method which adopts the Vortex-In-Cell (VIC) method and the Brinkman penalization model are further rigorously validated through comparison to experimental data at the Reynolds number of $2{\times}10^6$. The effects of changes in numerical parameters are also explored herein. We find that the present numerical method enables us to reasonably simulate vortex shedding phenomenon, as well as turbulent wakes of a hydrofoil.

UNIFORMLY CONVERGENT NUMERICAL SCHEME FOR SINGULARLY PERTURBED PARABOLIC DELAY DIFFERENTIAL EQUATIONS

  • WOLDAREGAY, MESFIN MEKURIA;DURESSA, GEMECHIS FILE
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.623-641
    • /
    • 2021
  • In this paper, numerical treatment of singularly perturbed parabolic delay differential equations is considered. The considered problem have small delay on the spatial variable of the reaction term. To treat the delay term, Taylor series approximation is applied. The resulting singularly perturbed parabolic PDEs is solved using Crank Nicolson method in temporal direction with non-standard finite difference method in spatial direction. A detail stability and convergence analysis of the scheme is given. We proved the uniform convergence of the scheme with order of convergence O(N-1 + (∆t)2), where N is the number of mesh points in spatial discretization and ∆t is mesh length in temporal discretization. Two test examples are used to validate the theoretical results of the scheme.

Numerical study on single nozzle performances for H class gas turbine based on CONVERGE CFD (H class급 가스터빈의 단일 노즐 성능에 대한 CONVERGE CFD 기반 수치 해석적 연구)

  • Kim, Jonghyun;Park, Jungsoo
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.2
    • /
    • pp.67-72
    • /
    • 2019
  • In this study, we investigate the non-reacting and reacting performance of single nozzle for post H class gas turbine by using commercial CFD tool, CONVERGE, based on adaptive mesh refinement. By varying swirl number and mixing length of base nozzle design. Through the numerical analysis, basic phenomena can be well described with respect to fuel concentration for non-reacting flow, temperature distribution, velocity vector and combustion outlet temperature distribution for reacting flow. However, there are rooms for improvements in model accuracy by comparing test results. Comparison between numerical analysis are planning for further study.

Octree-Based Adaptive Tetrahedral Meshing (옥트리 기반의 적응적 사면체 요소망구성)

  • Kim, Chul-Won;Park, Suk-Hoon;Choi, Min-Gyu
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.2
    • /
    • pp.45-53
    • /
    • 2011
  • This paper proposes a volume meshing method that fills the inside of an object with tetrahedra, of which dihedral angles are good. The suggested method is fast, stable and easy to implement It can also utilize an octree structure to space-efficiently fill an object with graded tetrahedra by reducing the total number of tetrahedra. To obtain a high-quality mesh with good dihedral angles, we restrict the octree such that any pair of neighboring cells only differs by one level. To efficiently construct a restricted-octree and generate a volume mesh from the octree, we utilize a signed distance field of an object on its bounded workspace. The suggested method can be employed in FEM-based simulation of large elasto-plastic deformation and tetrahedral-mesh-based simulation of fluid flow.

Relative efficiency and mesh selectivity of monofilament and twisted multifilament nylon gill net for Pacific saury, Cololabis saira, in the Northwest Pacific Ocean (북서태평양 꽁치 자망의 망지 재료에 따른 어획성능 및 망목선택성)

  • Jo, Hyun-Su;An, Doo-Hae;Koh, Jeong-Rack;Kim, Yeong-Seung;Park, Chang-Doo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.42 no.4
    • /
    • pp.195-202
    • /
    • 2006
  • To determine the relative efficiency and mesh selectivity of gill net for the Pacific saury, Cololabis saira, a series of fishing experiments was carried out in the Northwest Pacific Ocean from August 13 to October 13 in 2002, using gill nets of different mesh size(30, 33, 35, 37, 39 and 42mm) constructed from two kinds of twine material(monofilament, twisted multifilament nylon web). The relative efficiency of two material gears was expressed as the ratio obtained by dividing monofilament catch by multifilament catch in number. The master selection curve of each material gear was estimated by applying the extended Kitahara's method. The catch of experimental gears is mostly Pacific saury(98.6%), Cololabis saira. The kinds of bycatch are common squid(0.7%), Pacific mackerel(0.6%), etc. Catch comparisons in the two gears showed that monofilament nylon nets are 1.7 times more efficient. The optimum values in monofilament and multifilament gill net for Pacific saury are 8.28 and 8.23, respectively.

Studying Route Optimality in Multi-Hop Wireless Mesh Networks (다중 홉 무선 메쉬 네트워크에서 최적 경로에 관한 연구)

  • Kim, Seong-Kwan;Lee, Ok-Hwan;Lee, Sung-Ju;Choi, Sung-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1B
    • /
    • pp.16-23
    • /
    • 2009
  • This paper investigates how many optimal routes can be established in terms of a given wireless mesh routing metric. Although many of routing metrics have been devised to precisely derive the wireless link quality in mesh, most (if not all) metrics have not been evaluated their optimality along with routing protocols. We consider stateof-the-art routing metrics and a widely accepted routing protocol in order to observe the optimality of established routes varying the number of source nodes. Also, we propose a unidirectional routing to deal with possible link asymmetry feature in wireless links. Through comparative simulation evaluations, we show that the portion of optimally established routes becomes less as the network traffic load increases, regardless of employed metrics, network topologies, and routing protocols.