• Title/Summary/Keyword: Mesh number

Search Result 637, Processing Time 0.023 seconds

A Numerical Study of laminar vortex-shedding past a circular cylinder (원형 Cylinder 주위의 Vortex Shedding에 관한 수치 해석 연구)

  • Kim T. G.;Hur N.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.33-38
    • /
    • 2000
  • A Numerical study of laminar vortex-shedding past a circular cylinder has been performed widely by many researchers. Many factors, such as numerical technique and domain size, number and shape of grid, affected predicting vortex shedding and Strouhal number. In the present study, the effect of convection scheme, time discretization methods and grid dependence were investigated. The present paper presents the finite volume solution of unsteady flow past circular cylinder at Re=200, 400. The Strouhal number was predicted using UDS, CDS, Hybrid, Power-law, LUDS, QUICK scheme for convection term, implicit and crank-nicolson methods for time discretization. The grid dependence was investigated using H-type mesh and O-type mesh. It also studied that the effect of mesh size of the nearest adjacent grid of circular cylinder. The effect of convection scheme is greater than the effect of time discretization on predicting Strouhal. It has been found that the predicted Strouhal number changed with mesh size and shape.

  • PDF

Effects of Screen Packing Materials an Gas Discharge Dust Containing (함진기체의 배출에 미치는 금망 충진물의 영향)

  • 홍영호;함영민
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.120-126
    • /
    • 1993
  • This work was carried out to investigate the effects of solid mass flow rate, mean particle diameter and mesh number of screen packing material on minimum carrying velocity, which defined as the superficial gas velocity of the upper limit of chocking phenomenon. Vertical pneumatic conveying was studied on a 4.6cm 1. D. pipe, 180cm in length. Experiments were performed in both the empty and the screen-packed pipe. It was also examined the effect of superficial gas velocity, solid mass flow, mean particle diameter, and mesh number of packing material on pressure drop. Minimum carrying velocity in screen packed-pipe was lower than that in an empty pipe. besides minimum carrying velocity was decreased with increase in mesh number of screen packing material. The pressure drop In vortical packed-pipe was Increased with superficial gas velocity, mean particle diameter, and mesh number of screen packing material.

  • PDF

Variable-node element families for mesh connection and adaptive mesh computation

  • Lim, Jae Hyuk;Sohn, Dongwoo;Im, Seyoung
    • Structural Engineering and Mechanics
    • /
    • v.43 no.3
    • /
    • pp.349-370
    • /
    • 2012
  • Variable-node finite element families, termed (4 + k + l + m + n)-node elements with an arbitrary number of nodes (k, l, m, and n) on each of their edges, are developed based on the generic point interpolation with special bases having slope discontinuities in two-dimensional domains. They retain the linear interpolation between any two neighboring nodes, and passes the standard patch test when subdomain-wise $2{\times}2$ Gauss integration is employed. Their shape functions are automatically generated on the master domain of elements although a certain number of nodes are inserted on their edges. The elements can provide a flexibility to resolve nonmatching mesh problems like mesh connection and adaptive mesh refinement. In the case of adaptive mesh refinement problem, so-called "1-irregular node rule" working as a constraint in performing mesh adaptation is relaxed by adopting the variable-node elements. Through several examples, we show the performance of the variable-node finite elements in terms of accuracy and efficiency.

Theoretical Analysis of Factors Affecting to Heat Transfer Limitation in Screen Mesh Wick Heat Pipe (스크린 메쉬윅 히트파이프의 열전달한계에 영향을 미치는 인자의 이론적 해석)

  • 이기우;노승용;박기호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.11
    • /
    • pp.880-889
    • /
    • 2002
  • The purpose of the present study is to examine the factors affecting the heat transfer limitations of screen mesh heat pipe for electronic cooling by theoretical analysis. Diameter of pipe was 6 mm, and mesh numbers are 50, 100, 150, 200 and 250 and water was selected as a working fluid. According to the change of mesh number, wick layer, inclination and saturation temperature, capillary pressure, pumping pressure, liquid friction coefficient in wick, vapor friction coefficient, capillary limitation, entrainment limitation, sonic limitation and boiling limitation we analyzed by theoretical design method of a heat pipe. As some results, the capillary limitation in small diameter of heat pipe is largely affected by mesh number and wick layer.

An optimized mesh partitioning in FEM based on element search technique

  • Shiralinezhad, V.;Moslemi, H.
    • Computers and Concrete
    • /
    • v.23 no.5
    • /
    • pp.311-320
    • /
    • 2019
  • The substructuring technique is one of the efficient methods for reducing computational effort and memory usage in the finite element method, especially in large-scale structures. Proper mesh partitioning plays a key role in the efficiency of the technique. In this study, new algorithms are proposed for mesh partitioning based on an element search technique. The computational cost function is optimized by aligning each element of the structure to a proper substructure. The genetic algorithm is employed to minimize the boundary nodes of the substructures. Since the boundary nodes have a vital performance on the mesh partitioning, different strategies are proposed for the few number of substructures and higher number ones. The mesh partitioning is optimized considering both computational and memory requirements. The efficiency and robustness of the proposed algorithms is demonstrated in numerous examples for different size of substructures.

Optimum mesh size of the numerical analysis for structural vibration and noise prediction (구조물 진동.소음의 수치해석시 최적 요소크기는 .lambda./4이다.)

  • Kim, Jeung-Tae;Kang, Jun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1950-1956
    • /
    • 1997
  • An engineering goal in vibration and noise professionals is to develope quiet machines at the preliminary design stage, and various numerical techniques such as FEM, SEA or BEM are one of the schemes toward the goal. In this paper, the research has been focused on the sensitivity effect of mesh sizes for FEM application so that the optimum size of the mesh that leads to engineering solution within acceptable computing time could be generated. In order to evaluate the mesh size effect, three important parameters have been examined : natural frequencies, number of modes and driving point mobility. First, several lower modes including the fundamental frequency of a 2-D plate structure have been calculated as mesh size changes. Since theoretical values of natural frequencies for a simple structure are known, the deviation between the numerical and theoretical values is obtained as a function of mesh size. The result shows that the error is no longer decreased if the mesh size becomes a quarter wavelength or smaller than that. Second, the mesh size effect is also investigated for the number of modes. For the frequency band up to 1.4 kHz, the structure should have 38 modes in total. As the mesh size reaches to the quarter wavelength, the total count in modes approaches to the same values. Third, a mobility function at the driving point is compared between SEA and FEM result. In SEA application, the mobility function is determined by the modal density and the mass of the structure. It is independent of excitation frequencies. When the mobility function is calculated from a wavelength to one-tenth of it, the mobility becomes constant if the mesh becomes a quarter wavelength or smaller. We can conclude that dynamic parameters, such as eigenvalues, mode count, and mobility function, can be correctly estimated, while saving the computing burden, if a quarter wavelength (.lambda./4) mesh is used. Therefore, (.lambda./4) mesh is recommended in structural vibration analysis.

Selective Assembly for Products with Two Performance Characteristics (두 가지 특성치를 갖는 제품의 선택적 조립)

  • Kim, Seon-Jin;Jeong, Jae-Won;Jang, Jung-Sun;Lee, Min-Gu
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.740-745
    • /
    • 2005
  • Selective assembly is a method to find out appropriate matching pairs to be assembled to enhance the quality of the product. This study proposes an algorithm to select and match the components with two performance characteristics: at first, the number of matchable mates are calculated for each components. A matchable mate is defined to be the one of which the values of each performance characteristics lie in a rectangular mesh originated from the component under consideration. And the highest priority is given to the item with smallest number of matchable mates. The item of highest priority is matched to the one with smallest number of matchable mates among them. To find out the mates for the unmatched items, the mesh size is enlarged at the next iteration. Beginning with a small mesh, the procedure is repeated until the mesh covers the tolerance intervals of each performance characteristics. A VCR head case is analyzed.

  • PDF

Mesh Simplification and Adaptive LOD for Finite Element Mesh Generation

  • Date, Hiroaki;Kanai, Satoshi;Kishinami, Takeshi;Nishigaki, Ichiro
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.73-79
    • /
    • 2006
  • In this paper, we propose a new triangular finite element mesh generation method based on simplification of high-density mesh and adaptive Level-of-Detail (LOD) methods for efficient CAE. In our method, mesh simplification is used to control the mesh properties required for FE mesh, such as the number of triangular elements, element shape quality and size while keeping the specified approximation tolerance. Adaptive LOD methods based on vertex hierarchy according to curvature and region of interest, and global LOD method preserving density distributions are also proposed in order to construct a mesh more appropriate for CAE purpose. These methods enable efficient generation of FE meshes with properties appropriate for analysis purpose from a high-density mesh. Finally, the effectiveness of our approach is shown through evaluations of the FE meshes for practical use.

Effect of Addition of Various Mesh Sifted Powders from Safflower Seed on Quality Characteristic of Yangeng (입도별 홍화씨 분말 첨가가 양갱의 품질에 미치는 영향)

  • 김준한;박준홍;박소득;김종국;강우원;문광덕
    • Food Science and Preservation
    • /
    • v.9 no.3
    • /
    • pp.309-314
    • /
    • 2002
  • Safflower Yangengs were prepared with composite dried powder of small red bean(Phaseolus radiatus L.) containing various ratios of safflower(Carthamus tinctorius L.) seed powder sifted through 20, 35, 45 and 60 mesh size and kinds of mixed water, their cooking characteristics were evaluated. Water content and water activity of cooked products were increased as the content and sieve mesh number of safflower seed powder increasing from 5%, 20 mesh to 20%, 60mesh, respectively. Color values of yangeng were increased in green tea extract mixed water. Rheological properties of yangengs were measured by compression test with texture analyzer, as results, hardness and fracturability increased that were shown in high content and high mesh number sifted safflower seed powder, but adhesiveness and springiness decreased, respectively. From the sensory evaluation test for yangeng, sensory scores were good scores in more mesh number sifted powder addition, especially overall acceptance, texture and fracturability. The 45mesh and 15% powder added yangeng was noted as having high sensory scores and preferable acceptability in sensory evaluation.

Load Balancing and Interference Delay Aware Routing in IoT Aware Wireless Mesh Networks

  • Jilong Li;Murad Khan;Byeongjik Lee;Kijun Han
    • Journal of Internet Technology
    • /
    • v.20 no.1
    • /
    • pp.293-300
    • /
    • 2019
  • The Internet of Things (IoT) enables embedded devices to connect to the internet either through IP or the web in a physical environment. The increase in performance of wireless access services, adaptive load balancing, and interference routing metric becomes the key challenges in Wireless Mesh Networks (WMN). However, in the case of IoT over WMN, a large number of users generate abundant net flows, which can result in network traffic jam. Therefore, in this paper, we propose a Load Balancing and Interference Delay Aware routing metric algorithm to efficiently address the issues present in the current work. The proposed scheme efficiently utilizes the available mesh station queue information and the number of mesh stations suffering from channel interference in the available path. The simulations results show that the proposed scheme performed superior to the existing routing metrics present in the current literature for similar purposes.