• Title/Summary/Keyword: Mesh number

Search Result 637, Processing Time 0.021 seconds

A Study on the Bending Analysis of Rectangular Plates by Substructuring Technique (분할구조기법을 이용한 장방형판의 휨해석에 관한 연구)

  • 오숙경;김성용;김일중;이용수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.65-72
    • /
    • 1997
  • This study is the bending analysis of rectangular plates with 4-sides simply supported by Finite Element Method using substructuring technique. In finite element method, as the more number of finite element, the more dimension of matrix, it is difficult to obtain accuracy solution. In this paper substructuring technique is applied to finite element method in order to reduce the dimension of matrix according to the number of finite element mesh. To validate finite element method using substructuring technique, deflections and moments of rectangular plates by that method is compared with those of references. Considering the symmetry of the plate and load, one fourth of plate is analyzed. Operating time and the error of solutions according to the number of finite element mesh and substructure are compared with each other.

  • PDF

Analysis of tail flip of the target prawn at the time of penetrating mesh in water flow by tank experiments

  • KIM, Yonghae;GORDON, Malcolm S.
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.52 no.4
    • /
    • pp.308-317
    • /
    • 2016
  • The tail flip of the decapod shrimp is a main feature in escaping behavior from the mesh of the codend in the trawl. The characteristics of tail flip in target prawn was observed and analyzed in a water tunnel in respect of flow condition and mesh penetration by a high speed video camera (500 fps). The tail bending angle or bending time in static water was significantly different than in flow water (0.7 m/s) and resultantly the angular velocity in static water was significantly higher than in flow water when carapace was fixed condition. When escaping through vertical traverse net panel in water flow the relative moving angle and relative passing angle to flow direction during tail flip, it significantly decreases the number of shrimps escaping than the case of blocking shrimp. The bending angles of tail flip between net blocking and passing through mesh were not significantly different while the bending time of shrimp passing through mesh was significantly longer than when shrimp blocking on the net. Accordingly the angular velocity of passing through mesh was significantly slower than blocking on the net although the angular velocity of the tail flip was not significantly related with carapace length. The main feature of tail flip for mesh penetration was considered as smaller diagonal direction as moving and passing angle in relation to net panel as right angle to flow direction rather than the angular velocity of tail flip.

Comparison of fishing efficiency on octopus traps to reduce bycatch in the East Sea (혼획저감형 동행안 문어통발의 어획효율 비교)

  • Shin, Jong-Keun;Cha, Bong-Jin;Park, Hae-Hoon;Cho, Sam-Kwang;Kim, Hyun-Young;Jeong, Eui-Cheol;Kim, Yeong-Hye;Kim, Bu-Young
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • This study aims to reduce the bycatch of young fishes and other species in the octopus(Octopus vulagris, Octopus dolfleini) trap fishery on the East Sea, Korea. We carried out field experiments and tank experiments to verify the fishing efficiency and bycatch with the different 8 types of trap. 4 of them had mesh size 20, 35, 55 respectively and 75mm, 2 of them with escape ring of diameter 30mm and 50mm and 2 of them with escape device. The gap was 20 and 40mm respectively. The mesh sizes of the traps with ring and frame were 20mm. The traps with mesh size 20 and 35mm were not reasonable because it could fish under 300g octopus as bycatch which is not permitted by the Korean fisheries regulations. The catch number of octopus over 300g by traps with escape ring of diameter 30mm was 53. The catch of trap with mesh size 20mm was 54. The catch of trap with mesh size 35mm was 53. There is no significant difference among them. The catch number of octopus over 500g that is fishermen's favorite one was 46 in the trap with escap ring. The diameter of was 30 mm and the catch of trap with mesh size 20mm was more 3 catch and the catch of trap with mesh size 35mm had 6 more catch. Fishermen wanted to catch over 500g octopus because the octopuses had commercial value. The traps with escape ring can be replaceable with he traps with mesh size 20 or 35mm because the trap is suitable to conserve the octopus resources and keep the fishermen's fishing substantiality.

Efficient Data Representation of Stereo Images Using Edge-based Mesh Optimization (윤곽선 기반 메쉬 최적화를 이용한 효율적인 스테레오 영상 데이터 표현)

  • Park, Il-Kwon;Byun, Hye-Ran
    • Journal of Broadcast Engineering
    • /
    • v.14 no.3
    • /
    • pp.322-331
    • /
    • 2009
  • This paper proposes an efficient data representation of stereo images using edge-based mesh optimization. Mash-based two dimensional warping for stereo images mainly depends on the performance of a node selection and a disparity estimation of selected nodes. Therefore, the proposed method first of all constructs the feature map which consists of both strong edges and boundary lines of objects for node selection and then generates a grid-based mesh structure using initial nodes. The displacement of each nodal position is iteratively estimated by minimizing the predicted errors between target image and predicted image after two dimensional warping for local area. Generally, iterative two dimensional warping for optimized nodal position required a high time complexity. To overcome this problem, we assume that input stereo images are only horizontal disparity and that optimal nodal position is located on the edge include object boundary lines. Therefore, proposed iterative warping method performs searching process to find optimal nodal position only on edge lines along the horizontal lines. In the experiments, we compare our proposed method with the other mesh-based methods with respect to the quality by using Peak Signal to Noise Ratio (PSNR) according to the number of nodes. Furthermore, computational complexity for an optimal mesh generation is also estimated. Therefore, we have the results that our proposed method provides an efficient stereo image representation not only fast optimal mesh generation but also decreasing of quality deterioration in spite of a small number of nodes through our experiments.

대형단조에서의 미세기공 압착해석을 위한 유한요소법의 Global/Local 기법

  • 박치용;영동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.819-823
    • /
    • 1996
  • In the large steel ingosts, void defects exhibiting microvoid shapes are inevitably formed in the V-segregation zone of the ingots during solidification. In the hot open-die forging process, material properties are improved by eliminating internal porosity. The void size is practically very small as compared with the huge large ingot. Thus, for deformation analysis of a large ingot, a massive number of elements are needed in order to describe a void surface and to uniform mesh sturcture. In the present work the Global/Local scheme has been introduced in order to reduce the computational time and to easily generate the mesh system as a void module of local mesh for obtaining the accurate solution around a void. The procedure of the global- local method consists of two steps. In the first step global analysis is carried out which seeks a reasonably good solution with a cpurse mesh system without describing a void. Then, a local analysis is performed locally with a fine mesh system under the size-criterion of a local region. The computational time has been greatly reduced. Though the work it has been shown that large ingot forging incorporation small voids can be effectively analyzed by using the proposed Global/Local scheme.

  • PDF

Experimental and FE simulations of ferrocement columns incorporating composite materials

  • Shaheen, Yousry B.I.;Mahmoud, Ashraf M.;Refat, Hala M.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.155-171
    • /
    • 2017
  • This paper presents a proposed method for producing reinforced composite concrete columns reinforced with various types of metallic and non metallic mesh reinforcement. The experimental program includes casting and testing of twelve square columns having the dimensions of $100mm{\times}100mm{\times}1000mm$ under concentric compression loadings. The test samples comprise all designation specimens to make comparative study between conventionally reinforced concrete column and concrete columns reinforced with welded steel mesh, expanded steel mesh, fiber glass mesh and tensar mesh. The main variables are the type of innovative reinforcing materials, metallic or non metallic, the number of layers and volume fraction of reinforcement. The main objective is to evaluate the effectiveness of employing the new innovative materials in reinforcing the composite concrete columns. The results of an experimental investigation to examine the effectiveness of these produced columns are reported and discussed including strength, deformation, cracking, and ductility properties. Non-linear finite element analysis; (NLFEA) was carried out to simulate the behavior of the reinforced concrete composite columns. The numerical model could agree the behavior level of the test results. ANSYS-10.0 Software. Also, parametric study is presented to look at the variables that can mainly affect the mechanical behaviors of the model such as the change of column dimensions. The results proved that new reinforced concrete columns can be developed with high strength, crack resistance, and high ductility properties using the innovative composite materials.

SNR Scalable Coding of 3-D Mesh Sequences Based on Singular Value Decomposition (특이값 분해에 기반한 3차원 메쉬 동영상의 SNR 계층 부호화)

  • Heu, Jun-Hee;Kim, Chang-Su;Lee, Sang-Uk
    • Journal of Broadcast Engineering
    • /
    • v.13 no.3
    • /
    • pp.289-298
    • /
    • 2008
  • We propose an SNR-scalable coding algorithm for three-dimensional mesh sequences based on singular value decomposition (SVD). SVD achieves a coding gain by representing a mesh sequence with a small number of basis vectors and singular values. First, we introduce a bit plane coding scheme and derive a quantitative relationship between each bit plane and the reconstructed image quality. Using the relationship, we develop a rate-distortion (RD) optimized coding algorithm. Moreover, we propose prediction techniques to exploit the spatio-temporal correlations in real mesh sequences. Simulation results demonstrate that the proposed algorithm provides significantly better RD performance than conventional SVD coders.

Framework for End-to-End Optimal Traffic Control Law Based on Overlay Mesh

  • Liu, Chunyu;Xu, Ke
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.428-437
    • /
    • 2007
  • Along with the development of network, more and more functions and services are required by users, while traditional network fails to support all of them. Although overlay is a good solution to some demands, using them in an efficient, scalable way is still a problem. This paper puts forward a framework on how to construct an efficient, scalable overlay mesh in real network. Main differences between other overlays and ours are that our overlay mesh processes some nice features including class-of-service(CoS) and traffic engineering(TE). It embeds the end-to-end optimal traffic control law which can distribute traffic in an optimal way. Then, an example is given for better understanding the framework. Particularly, besides good scalability, and failure recovery, it possesses other characteristics such as routing simplicity, self-organization, etc. In such an overlay mesh, an applicable source routing scheme called hierarchical source routing is used to transmit data packet based on UDP protocol. Finally, a guideline derived from a number of simulations is proposed on how to set various parameters in this overlay mesh, which makes the overlay more efficient.

Data Aggregation Method using Shuffled Row Major Indexing on Wireless Mesh Sensor Network (무선 메쉬 센서 네트워크에서 셔플드 로우 메이져 인덱싱 기법을 활용한 데이터 수집 방법)

  • Moon, Chang-Joo;Choi, Mi-Young;Park, Jungkeun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.984-990
    • /
    • 2016
  • In wireless mesh sensor networks (WMSNs), sensor nodes are connected in the form of a mesh topology and transfer sensor data by multi-hop routing. A data aggregation method for WMSNs is required to minimize the number of routing hops and the energy consumption of each node with limited battery power. This paper presents a shortest path data aggregation method for WMSNs. The proposed method utilizes a simple hash function based on shuffled row major indexing for addressing sensor nodes. This allows sensor data to be aggregated without complex routing tables and calculation for deciding the next hop. The proposed data aggregation algorithms work in a fractal fashion with different mesh sizes. The method repeatedly performs gathering and moves sensor data to sink nodes in higher-level clusters. The proposed method was implemented and simulations were performed to confirm the accuracy of the proposed algorithms.

Strongly Hamiltonian Laceability of Mesh Networks (메쉬 연결망의 강한 해밀톤 laceability)

  • Park Kyoung-Wook;Lim Hyeong-Seok
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.8
    • /
    • pp.393-398
    • /
    • 2005
  • In interconnection networks, a Hamiltonian path has been utilized in many applications such as the implementation of linear array and multicasting. In this paper, we consider the Hamiltonian properties of mesh networks which are used as the topology of parallel machines. If a network is strongly Hamiltonian laceable, the network has the longest path joining arbitrary two nodes. We show that a two-dimensional mesh M(m, n) is strongly Hamiltonian laceabie, if $m{\geq}4,\;n{\geq}4(m{\geq}3,\;n{\geq}3\;respectively)$, and the number of nodes is even(odd respectively). A mesh is a spanning subgraph of many interconnection networks such as tori, hypercubes, k-ary n-cubes, and recursive circulants. Thus, our result can be applied to discover the fault-hamiltonicity of such networks.