• Title/Summary/Keyword: Mesh Translation method

Search Result 11, Processing Time 0.041 seconds

Finite Element Analysis of Creep Crack Growth Behavior (크리프 균열 진전 거동의 유한 요소 해석)

  • 최현창
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.490-497
    • /
    • 1998
  • An elast-biscoplastic finite element analysis is performed to investigate detailed growth behavior of creep cracks and the numerical results are compared with experimental results. The results of mesh translation method are compared with those of node release method. Load line displancement curve obtained from the crack growth analysis by mesh translation shows the improved results than that obtained from the crack growth by node release method when the secondary creep rate is only used as creep material property. The results of accounting for primary creep rate and instantaneous plasticity shows a good agreement with the experimental result.

  • PDF

Development of a System to Convert a 3D Mesh Model in STL Format into OBJ Format (STL 3D 형식의 메쉬 모델을 형식으로 OBJ 변환하는 시스템 개발)

  • Yeo, Changmo;Park, Chanseok;Mun, Duhwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.78-86
    • /
    • 2018
  • The 3D mesh model is used in various fields, such as virtual reality, shape-based searching, 3D simulation, reverse engineering, 3D printing, and laser scanning. There are various formats for the 3D mesh model, but STL and OBJ are the most typical. Since application systems support different 3D mesh formats, developing technology for converting 3D mesh models from one format into another is necessary to ensure data interoperability among systems. In this paper, we propose a method to convert a 3D mesh model in STL format into the OBJ format. We performed the basic design of the conversion system and developed a prototype, then verified the proposed method by experimentally converting an STL file into an OBJ file for test cases using this prototype.

Combined Extended and Superimposed Finite Element Method for Crack Analysis (균열해석을 위한 겹침확장 유한요소법)

  • 이상호;송정훈;허문석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.341-348
    • /
    • 2004
  • This paper presents a modeling technique of cracks by combined extended and superposed finite element method (XSFEM) which is a combination of the extended finite element method (XFEM) and the mesh superposition method (sversion FEM). In the proposed method, the near-tip field is modeled by a superimposed patch consisting of quarter point elements and the rest of the discontinuity is treated by the XFEM. The actual crack opening in this method is measured by the sum of the crack openings of XFEM and SFEM in transition region. This method retains the strong point of the XFEM so it can avoid remeshing in crack evolution and trace the crack growth by translation or rotation of the overlaid mesh and the update of the nodes to be enriched by step functions. Moreover, the quadrature of the Galerkin weak form becomes simpler. Numerical experiments are provided to demonstrate the effectiveness and robustness of the proposed method.

  • PDF

A Watermarking Algorithm of 3D Mesh Model Using Spherical Parameterization (구면 파라미터기법을 이용한 3차원 메쉬 모델의 워더마킹 알고리즘)

  • Cui, Ji-Zhe;Kim, Jong-Weon;Choi, Jong-Uk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.1
    • /
    • pp.149-159
    • /
    • 2008
  • In this paper, we propose a blind watermarking algorithm of 3d mesh model using spherical parameterization. Spherical parameterization is a useful method which is applicable to 3D data processing. Especially, orthogonal coordinate can not analyse the feature of the vertex coordination of the 3D mesh model, but this is possible to analyse and process. In this paper, the centroid center of the 3D model was set to the origin of the spherical coordinate, the orthogonal coordinate system was transformed to the spherical coordinate system, and then the spherical parameterization was applied. The watermark was embedded via addition/modification of the vertex after the feature analysis of the geometrical information and topological information. This algorithm is robust against to the typical geometrical attacks such as translation, scaling and rotation. It is also robust to the mesh reordering, file format change, mesh simplification, and smoothing. In this case, the this algorithm can extract the watermark information about $90{\sim}98%$ from the attacked model. This means it can be applicable to the game, virtual reality and rapid prototyping fields.

Accurate Stitching for Polygonal Surfaces

  • Zhu, Lifeng;Li, Shengren;Wang, Guoping
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.71-77
    • /
    • 2010
  • Various applications, such as mesh composition and model repair, ask for a natural stitching for polygonal surfaces. Unlike the existing algorithms, we make full use of the information from the two feature lines to be stitched up, and present an accurate stitching method for polygonal surfaces, which minimizes the error between the feature lines. Given two directional polylines as the feature lines on polygonal surfaces, we modify the general placement method for points matching and arrive at a closed-form solution for optimal rotation and translation between the polylines. Following calculating out the stitching line, a local surface optimization method is designed and employed for postprocess in order to gain a natural blending of the stitching region.

A STUDY ON AMALGAM CAVITY FRACTURE WITH TWO DIMENSIONAL FINITE ELEMENT METHOD I : VARIATION OF THE WIDTH OF CAVITY (아말감 와동의 파절에 관한 2차원 유한요소법적 연구 I : 와동 폭의 변화)

  • Kim, Han-Wook;Lee, Chung-Sik
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.655-669
    • /
    • 1995
  • Restorative procedures can lead to weakening tooth due to reduction and alteration of tooth structure. It is essential to prevent fractures to conserve tooth. Among the several parameters in cavity designs, cavity isthmus is very important. In this study, amalgam 0 cavity was prepared on maxillary first premolar. Two dimensional finite element models were made by serial photographic method and isthmus(1/4, 1/3, 1/2, 2/3 of intercuspal distance) were varied. Three or four-nodal mesh were used for the two dimensional finite element models. The periodontal ligament and alveolar bone surrounding the tooth were excluded in these models. 1S model was sound tooth with no amalgam cavity. B model was assumed perfect bonding between the restoration and cavity wall. Both compressive and tensile forces were distributed directly to the adjacent regions. A load of 500N was applied vertically at the first node from the lingual slope of the buccal cusp tip. This study analysed von Mises stress, 1 and 2 directional normal stress and Y and Z axis translation with FEM software Super SAPII Version 5.2 (Algor Interactive System Co.) and hardware 486 DX2 PC. The results were as :follows : 1. 1S model was slightly different with 1B model in stress distibution. 1S, 2B, 3B, 4B models showed similiar stress distribution. 2. 1S model and four B models showed similiar pattern in Y axis and Z axis translation. 3. 1S model and four B models showed the bending phenomenon in the translation. 4. As increasing of the width of the cavity, experimental group was similiar with the control group in stress distribution. 5. As increasing of the width of the cavity, experimental group was similiar with the control group in Y and Z axis tranlation.

  • PDF

Discrete Wavelet Transform for Watermarking Three-Dimensional Triangular Meshes from a Kinect Sensor

  • Wibowo, Suryo Adhi;Kim, Eun Kyeong;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.249-255
    • /
    • 2014
  • We present a simple method to watermark three-dimensional (3D) triangular meshes that have been generated from the depth data of the Kinect sensor. In contrast to previous methods, which maintain the shape of 3D triangular meshes and decide the embedding place, requiring calculations of vertices and their neighbors, our method is based on selecting one of the coordinate axes. To maintain shape, we use discrete wavelet transform and constant regularization. We know that the watermarking system needs the information to be embedded; we used a text to provide that information. We used geometry attacks such as rotation, scales, and translation, to test the performance of this watermarking system. Performance parameters in this paper include the vertices error rate (VER) and bit error rate (BER). The results from the VER and BER indicate that using a correction term before the extraction process makes our system robust to geometry attacks.

Development of a Post-Processing Program for Flow Analysis Based on the Object-Oriented Programming Concept (OOP 개념에 기초한 유동해석용 후처리 프로그램 개발)

  • Myong, Hyon-Kook;Ahn, Jong-Ki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.1
    • /
    • pp.62-69
    • /
    • 2008
  • A post-processing program based on the OOP(Object-Oriented Programming) concept has been developed for flow visualization of the flow analysis code(PowerCFD) using unstructured cell-centered method. User-friendly GUI(GTaphic User Interface) has been built on the base of MFC(Microsoft Foundation Class). The program is organized as modules by classes including those based on VTK(Visualization ToolKit)-library, and these classes are made to function through inheritance and cooperation which is an important and valuable OOP concept. The major functions of this post-processor program are introduced and demonstrated, which include mesh plot, contour plot, vector plot, surface plots, cut plot, clip plot, xy-plot and streamline plot as well as view manipulation (translation, rotation, scaling etc).

A Computational Fluid Dynamics Analysis on Sloshing in Rectangular Tank (사각통에서의 슬로싱에 대한 전산유체역학적 연구)

  • Kwack Youngkyun;Lee Youngsin;Kor Sungho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.99-102
    • /
    • 2002
  • The present study describes a numerical analysis for simulation of the sloshing of flows with free-surface which contained in a rectangular tank The SOLA-VOF (Volume of fluid) method uses a fixed mesh for calculating the motion of flow and the free-surface. This Eulerian approach enables the VOF method to use only a small amount of computer memory for simulating sloshing problems with complicated free-surface contours. The VOF function, representing the volume fraction of a cell occupied by the fluid, is calculated for each cells, which gives the locating of the free-surface filling any some fraction of cells with fluid. Using SOLA-VOF method, the study describes visualization about simulation of the sloshing of flows and damping effect by baffle. Translation and pitching motion of the forms have been investigated The time-dependent changes of free-surface height are used for visualization subject to several conditions such as fluid height horizontal acceleration, sinusoidal motion, and viscosity. The free-surface heights were used for comparing wall-force, which is caused by sloshing of flows. Baffle was Installed to reduce the force on the wall by sloshing of flows. Damping effects was extensively expressed under the conditions such as baffle shape and position.

  • PDF

Finite Element Analysis of Creep Crack Growth Behavior Including Primary Creep Rate (1차 크리프 속도를 고려한 크리프 균열 진전의 유한요소 해석)

  • Choi, Hyeon-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1120-1128
    • /
    • 1999
  • An elastic-viscoplastic finite element analysis is performed to investigate detailed growth behavior of creep cracks and the numerical results are compared with experimental results. In Cr-Mo steel stress fields obtained from the crack growth method by mesh translation were compared with both cases that the secondary creep rate is only used as creep material property and the primary creep rate is included. Analytical stress fields, Riedel-Rice(RR) field, Hart-Hui-Riedel(HR) field and Prime(named in here) field, and the results obtained by numerical method were evaluated in details. Time vs. stress at crack tip was showed and crack tip stress fields were plotted. These results were compared with analytical stress fields. There is no difference of stress distribution at remote region between the case of 1st creep rate+2nd creep rate and the case of 2nd creep rate only. In case of slow velocity of crack growth, the effect of 1st creep rate is larger than the one of fast crack growth rate. Stress fields at crack tip region we, in order, Prime field, HR field and RR field from crack tip.