• Title/Summary/Keyword: Mesh Surface

Search Result 801, Processing Time 0.032 seconds

The Effects of Water-Absorbent Softner Treatment on the End-Use Properties of Polyester Knitted Fabrics (흡습유연 처리에 의한 PET 소재의 성능 변화 분석)

  • Kwon, Young-Ah
    • Fashion & Textile Research Journal
    • /
    • v.12 no.5
    • /
    • pp.676-682
    • /
    • 2010
  • Superior hydrophilic properties will allow varieties of polyester(PET) fiber materials, fabrics and industrial materials a broader scope of use. The purpose of this study was to investigate the effect of water-absorbent softener treatment on the end-use properties and the hand of polyester knitted fabrics. Two different fabrics were knitted for the summer ladies' outwear; PET jersey and PET mesh. Variables were softner treatment and stitch type(jersey and mesh). Mechanical properties of the fabric samples were measured by KES-FB system. From these, primary hand values(HV) were evaluated by the conversion equation (KW-403-KTU) and the total hand value(T.H.V.) was calculated according to the KN-304 Summer. Both water-absorbent softner treatment and stitch types affected mechanical properties and hand values of PET fabrics. Mesh were thicker than single jersey stitch. As they became thicker, tensile, shear, and compressional energy increased. It appeared that coefficient of friction of mesh stitch was larger than that of single jersey stitch. The coefficient of friction and the mean deviation of surface roughness were decreased by softener treatment. After softner treatment KOSHI and SHARI of the both PET jersey and PET mesh decreased. However, FUKURAMI values of PET jersey increased and that of PET mesh decreased. The T.H.V. of the treated PET jersey was lower than that of the untreated one, while the T.H.V. of the treated PET mesh was higher than that of the untreated one. Overall T.H.V. of the single jersey was better than that of the mesh before and after softner treatment.

Quality Characteristics of Korean Red Ginseng Powder with Different Milling Methods (분쇄방법에 따른 고려홍삼분말의 품질특성)

  • 서창훈;이종원;도재호;김나미;양재원;장규원
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.3
    • /
    • pp.370-374
    • /
    • 2003
  • Cell cracking method using a non-collision was evaluated for the possibility of new red ginseng grinding technique. Based on particle size distribution analysis by 1size shaker, the ratios of 100 mesh penetrated particles were 94.9% for hammer mill (group A) and 95.6% for cell crack (group B). The ratio of 120 mesh penetrated particle of group A was higher than that in group B. The particle size distributions for 100 mesh non-penetrated Powder between 2 groups were not significantly different, and particle size distribution analysis by laser scattering analyzer showed that the particle size ranges were 0.77~128.07 ${\mu}{\textrm}{m}$ for group A and 4.24~180.07 ${\mu}{\textrm}{m}$ for group B. The Particle size distribution in group A was more broad than that in group B. The mean particle size in group B was larger than that in group A, while the standard deviation of particle size distribution in group B was less than that in group A. Structural surface characteristics, in group A, particle size distribution was broad and the distribution curve was amorphous. The structure of individual particles was similar to unequal stone which was roughly grinded and had soft cotton-like surface. In the contrary, in group B, particle size distribution was relatively narrow and also individual size particles were ubiquitously distributed. The structure of individual particles was unequal cut stone shape.

Development of Analytical Method for Microplastics in Seawater (해수에 잔류하는 미세플라스틱의 정성정량 분석법 확립)

  • Chae, Doo-Hyun;Kim, In-Sung;Song, Young Kyoung;Kim, Sungwoo;Kim, Seung-Kyu
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.1
    • /
    • pp.88-98
    • /
    • 2014
  • Despite of emerging and increasing concerns to microplastics, no standard methodology has not been proposed for determination of microplastics. This study aims to develop the analysis method for microplastics in seawater by overviewing methodologies proposed by previous studies and by assessing some processes in those methodologies which possibly cause uncertainties in microplastic determination. Furthermore, we present preliminary results of distribution characteristics of microplastics in seawater of Incheon/Kyeonggi coastal region which is based on our new methodology. Microplastics in surface microlayer (SML) and subsurface water (SSW) were collected using mesh screen and planktonic nets (trawl net with $330{\mu}m$ mesh size and hand net with $20{\mu}m$ mesh size), respectively. Microplastics with < $300{\mu}m$ was predominant, indicating hand net as the better collection tool for SSW. As for SML, FT-IR based microplastic concentration was well matched with naked-eye based concentration which has been used in most of previous studies. However, a poor relationship was observed for SSW, indicating that concentration data of previous SSW studies should be corrected. Incheon/Kyeonggi bay seawater contained the similar concentration range with those in coastal region of the Nakdong River. Our methodology can be used as a basic tool for further microplatic studies.

The Characteristic of Hydrogen Generation on the Structure of Plasma Reactor Using the Streamer Discharge in the Water (수중 스트리머 방전용 플라즈마 반응기 구조에서 수소발생 특성)

  • Park, Jae-Youn;Kim, Jong-Seok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.4
    • /
    • pp.37-42
    • /
    • 2006
  • The effect of arc like streamer discharge is investigated on the hydrogen generation using the multineedle-plate electrode geometry plasma realtor(MPER) and the needle-plate electrode geometry plasma reactor(NPER). In order to restrict waves at the water surface when the high voltage applied, two kinds of the insulator such as the rectangular mesh or the hole mesh type are installed under the water surface. The discharge assistant of the two type(the saw type and the $TiO_2$ pellet type) was placed under the water surface to investigate the effect of the water surface conditions. The experimental results are compared in case of the reactor with and without the discharge assistant on the water surface.

A Novel Method for 3D Surface and Solid Construction Analysis of Fabric Microstructure (직물 미세구조의 3차원 표면 및 솔리드 형성 방법)

  • Lee, Ye-Jin;Lee, Byung-Cheol
    • Korean Journal of Human Ecology
    • /
    • v.21 no.3
    • /
    • pp.539-550
    • /
    • 2012
  • In-depth knowledge of fabric microstructure is essential for understanding clothing comfort since it plays a significant role in heat and mass transfer between the human body and clothing. In this study, a novel method was employed for investigating 3D surfaces and solid construction characteristics of specific fabrics by using a reverse engineering technique. The surface construction data were obtained by a confocal laser scanning microscope and then manipulated by a 3D analysis program. Triangle mesh was used for connecting each 3D point, with clouds and fabric surface characteristics created by rendering techniques. For generating a 3D solid model, determinants of radius of curvature was used. According to the proposed method, actual surface expression of the real fabric was achieved successfully. The results from this methodology can be applied to the detailed analysis of clothing comfort that is highly influenced by the microstructure of the fabric.

Multiresolution Mesh Editing based on the Extended Convex Combination Parameterization (확장 볼록 조합 매개변수화 기반의 다중해상도 메쉬 편집)

  • 신복숙;김형석;김하진
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.7
    • /
    • pp.1302-1311
    • /
    • 2003
  • This paper presents a more stable method of multiresolution editing for a triangular mesh. The basic idea of our paper is to embed an editing area of a mesh onto a 2D region and to produce 3D surfaces which interpolate the editing-information. In this paper, we adopt the extended convex combination approach based on the shape-preserving parameterization for the embedding, which guarantees no self-intersection on the 2D embedded mesh. That is, the result of the embedding is stable. Moreover, we adopt the multi-level B-spline approach to generate the surface containing all of 3D editing-information, which can make us control the editing area in several levels. Hence, this method supports interactive editing and thus can produce intuitive editing results.

  • PDF

The Influence of Meshing Strategies on the Propeller Simulation by CFD

  • Bahatmaka, Aldias;Kim, Dong-Joon
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.78-85
    • /
    • 2018
  • This paper presents a study of the effects of the free surface to marine propeller including the mesh effect of the models. In the present study, we conduct the numerical simulation for propeller performance employing the openwater test. The numerical simulations compare the meshing strategies for the propeller and show the effects on both thrust and torque. OpenFOAM is applied to solve the propeller problem and then open water performances of KCS propeller (KP505) are estimated using a Reynold-averaged Navier-Stokes equations (RANS) solver and the turbulence of the $K-{\omega}$ SST model. Unstructured meshes are used in the numerical simulation employing hexahedral meshing for mesh generation. The arbitrary mesh interfacing (AMI) and multiple rotating frame (MRF) are compared to define the best meshing strategy. The meshing strategies are evaluated through 3 classifications, i.e., coarse, medium, and fine mesh. Thus, the propeller can be performed utilizing the best mesh strategy. The computational results are validated by comparison with the experimental results. The $K_T$, $K_Q$, and efficiency of the propeller are compared to an experimental result and for all of the meshing strategies. Thus, the simulations show the influence of meshing in order to perform the propeller performances.

대형단조에서의 미세기공 압착해석을 위한 유한요소법의 Global/Local 기법

  • 박치용;영동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.819-823
    • /
    • 1996
  • In the large steel ingosts, void defects exhibiting microvoid shapes are inevitably formed in the V-segregation zone of the ingots during solidification. In the hot open-die forging process, material properties are improved by eliminating internal porosity. The void size is practically very small as compared with the huge large ingot. Thus, for deformation analysis of a large ingot, a massive number of elements are needed in order to describe a void surface and to uniform mesh sturcture. In the present work the Global/Local scheme has been introduced in order to reduce the computational time and to easily generate the mesh system as a void module of local mesh for obtaining the accurate solution around a void. The procedure of the global- local method consists of two steps. In the first step global analysis is carried out which seeks a reasonably good solution with a cpurse mesh system without describing a void. Then, a local analysis is performed locally with a fine mesh system under the size-criterion of a local region. The computational time has been greatly reduced. Though the work it has been shown that large ingot forging incorporation small voids can be effectively analyzed by using the proposed Global/Local scheme.

  • PDF

An Algorithm of Automatic Mesh Generation by Recursive Subdivisions (순환적 분할에 의한 유한 요소망 자동 생성 알고리즘)

  • 이재영
    • Computational Structural Engineering
    • /
    • v.9 no.3
    • /
    • pp.145-155
    • /
    • 1996
  • This paper suggests a new algorithm of automatic mesh generation over planar domains with arbitrarily shaped boundaries and control curves. The algorithm is based on the method of recursively subdividing the domain by the path connecting, with minimum penalty value, two points on the super-loop, which consists of the boundaries and the control curves, The algorithm is not subject to any limitation on the shape of the domain, and its process can be fully automated. Therefore, this algorithm can be implemented into computer programs which require minimal user intervention while generating finite element meshes over complicated domains. This algorithm can also be easily extended for application to the generation of meshes over curved surfaces, or to the adaptive mesh generation.

  • PDF

Computational fluid dynamics simulation for tuned liquid column dampers in horizontal motion

  • Chang, Cheng-Hsin
    • Wind and Structures
    • /
    • v.14 no.5
    • /
    • pp.435-447
    • /
    • 2011
  • A Computational Fluid Dynamics model is presented in this study for the simulation of the complex fluid flows with free surfaces inside the Tuned Liquid Column Dampers in horizontal motion. The characteristics of the fluid model of the TLCD in horizontal motion include the free surface of the multiphase flow and the horizontal moving frame. In this study, the time depend unsteady Standard ${\kappa}-{\varepsilon}$ turbulent model based on Navier-Stokes equations is chosen. The volume of fluid (VOF) method and sliding mesh technique are adopted to track the free surface of water inside the vertical columns of TLCD and treat the moving boundary of the walls of TLCD in horizontal motion. Several model solution parameters comprising different time steps, mesh sizes, convergence criteria and discretization schemes are examined to establish model parametric independency results. The simulation results are compared with the experimental data in the dimensionless amplitude of the water column in four different configured groups of TLCDs with four different orifice areas. The predicted natural frequencies and the head loss coefficient of TLCDs from CFD model are also compared with the experimental data. The predicted numerical results agree well with the available experimental data.