• Title/Summary/Keyword: Mesh Antenna

Search Result 36, Processing Time 0.032 seconds

Thermal Characteristics Investigation of Space-borne Deployable Mesh Antenna according to the Mesh Weaving Density (OPI) (메쉬 제직 밀도(OPI)에 따른 우주용 전개형 메쉬 안테나의 열적 특성 분석)

  • Bong-Geon Chae;Hye-In Kim;Hyun-Kyu Baek;Hyun-Ung Oh
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.1-9
    • /
    • 2023
  • Recently, as Synthetic Aperture Radar (SAR), communication, and signal surveillance missions of spacecraft have become more advanced, research has been actively conducted on the deployable large mesh antenna system with excellent storage efficiency compared to the deployment area, and light weight. Deployable Mesh antennae are characterized by an increase in the number of Openings Per Inch (OPI), which is a measure of mesh weaving density as the mission frequency band increases, and this OPI change directly affects the thermal optical properties of the mesh antenna, so research on this is required. In this paper, to verify the thermal relationship between the optical properties of the mesh and antenna reflector, thermal sensitivity analysis between the mesh and the antenna reflector is performed by in-orbit thermal analysis with various optical characteristics of the mesh based on existing overseas research cases. In addition, the temperature gradient effect of the mesh reflector is analyzed.

Effects of Mesh Structure Variations of Meshed Ground on Microstrip Comb Array Antenna (그물망 접지의 그물망 구조의 변화가 MCAA에 미치는 영향)

  • Ki, Hyeon-Cheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.69-74
    • /
    • 2018
  • In this paper, We investigated the effects of mesh structure variations of meshed ground on MCAA(Microstrip Comb Array Antenna). First, we designed MCAA in 24GHz ISM band and we investigated the variations of the gain and the SLL(Side Lobe Level) of the MCAA as we varied the mesh structure of the meshed ground. We varied two variables, mesh size and unfilled rato, which is defined as no metal area ratio in mesh for the investigation. We investigated two types of MCAA. Those are flat MCAA composed of flat radiator and tapered MCAA composed of tapered radiator. Both the antenna gains of flat MCAA and tapered MCAA are decreased as the unfilled rato increased. However, increase of mesh size made more dramatic decrease in antenna gain than increase of unfilled rato. The antenna SLL showed similar trend. But tapered MCAA affected more severely by variation of mesh size than flat MCAA.

Analysis of Radio Frequency (RF) Characteristics and Effectiveness according to the Number of Gores of Mesh Antenna (그물형 안테나의 고어 개수에 따른 Radio Frequency (RF) 특성 분석)

  • Kim, Jin-Hyuk;Lee, Si-A;Park, Tae-Yong;Choi, Han-Sol;Kim, Hongrae;Chae, Bong-Geon;Oh, Hyun-Ung
    • Journal of Space Technology and Applications
    • /
    • v.1 no.3
    • /
    • pp.364-374
    • /
    • 2021
  • This research discusses the change in radio frequency (RF) characteristics according to the number of Gores on the deployable mesh antennas for potential micro-satellite applications. The deployable type of lightweight mesh antenna can be used for various space missions such as communication/SAR/ SIGINT. In order to implement an ideal curvature of antenna surface, sufficient number of antenna rib structures are required. However, the increase in antenna ribs affects various design factors of the antenna system, especially total system mass, complexity of deployable mechanism and reliability. In this paper, the proper number of ribs for the mesh antenna were derived by comparison of electro-magnetic (EM) simulation results of example of antenna model in accordance with the various number of ribs.

Mesh topological form design and geometrical configuration generation for cable-network antenna reflector structures

  • Liu, Wang;Li, Dong-Xu;Jiang, Jian-Ping
    • Structural Engineering and Mechanics
    • /
    • v.45 no.3
    • /
    • pp.411-422
    • /
    • 2013
  • A well-designed mesh shape of the cable net is of essential significance to achieve high performance of cable-network antenna reflectors. This paper is concerned with the mesh design problem for such antenna reflector structure. Two new methods for creating the topological forms of the cable net are first presented. Among those, the cyclosymmetry method is useful to generate different polygon-faceted meshes, while the topological mapping method is suitable for acquiring triangle-faceted meshes with different mesh grid densities. Then, the desired spatial paraboloidal mesh geometrical configuration in the state of static equilibrium is formed by applying a simple mesh generation approach based on the force density method. The main contribution of this study is that a general technical guide for how to create the connectivities between the nodes and members in the cable net is provided from the topological point of view. With the new idea presented in this paper, multitudes of mesh configurations with different net patterns can be sought by a certain rule rather than by empiricism, which consequently gives a valuable technical reference for the mesh design of this type of cable-network structures in the engineering.

Thermal Characteristics Investigation of Spaceborne Mesh Antenna with Dual-parabolic Surfaces (이중막 구조를 적용한 우주용 전개형 메쉬 안테나의 열적 특성 분석)

  • Kim, Hye-In;Chae, Bong-Geon;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.86-93
    • /
    • 2022
  • Generally, a deployable solar panel is used primarily to achieve sufficient power output to perform the mission. However, temperature distribution on the antenna reflector may increase due to the shading effect induced by the presence of the deployable solar panels. Appropriate thermal design is critical to minimize the thermal deformation of the mesh antenna reflector in harsh on-orbit thermal environments to ensure remote frequency (RF) performance. In this paper, we proposed a dual-surface primary reflector consisting of a mesh antenna and a flexible fabric membrane sheet. This design strategy can contribute to thermal stabilization by using a flexible solar panel on the rear side of membrane sheet to reduce the temperature distribution caused by the deployable solar panel. The effectiveness of the mesh antenna design strategy investigates through on-orbit thermal analysis.

Transparent Rectangular Patch Antenna Using Square Metal Mesh Transparent Electrode (정방형 메탈메쉬 투명전극을 이용한 투명 사각 패치 안테나)

  • Kang, Seok Hyon;Jung, Chang Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.4
    • /
    • pp.277-284
    • /
    • 2018
  • This paper reports the transparent electrode, which would be applied to transparent displays and smart glasses. Herein, a squared metal mesh with the most widely used copper wire in microwaves is studied for the alternating thin-film-type transparent and conducting indium tin oxide(ITO), with a low conductivity(sheet resistance > $5{\Omega}/sq.$). The electromagnetic performance of a patch antenna with metal mesh is analyzed. This paper presents the results of the optical(OT, optical transparent) and electrical(sheet resistance) characteristics of a squared metal mesh, which is a basic design. To improve the OT, copper wire(w=0.2 mm) is used in fabricating the squared metal mesh and the relationship between the OT and the antenna performance(radiation gain, radiation pattern) was analyzed according to the mesh size(l=1, 2 mm). The measurement results show that the antenna performance and the optical characteristic are in inverse proportion to each other. In real applications, the optical and electrical characteristics, and the costs of production are to be considered.

Antenna Selection and Power Control Method for Uniform Circular Array Antennas Beamforming (원형 배열 안테나 빔 형성을 위한 안테나 선택 및 제어 방법)

  • Park, Seongho;Park, Chul;Kim, Hanna;Chung, Jaehak
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.1
    • /
    • pp.68-76
    • /
    • 2015
  • This paper proposes the antenna selection scheme and power control algorithms of multiple nodes beamforming when the vehicles equipped with circular array antennas is moving and construct mobile mesh networks. The proposed antenna selection scheme chooses beamforming antenna elements considering antenna radiation gain and allows duplicated antenna selection for multiple adjacent nodes. The proposed power control algorithms maximize SIR for the duplicated antenna selection. The simulation demonstrates that the proposed antenna selection and power control achieve 2.5dB higher SIR gain than that of conventional methods when two nodes are apart from $15^{\circ}$.

A Distributed Web-Topology for the Wireless Mesh Network with Directional Antennas

  • Ranjitkar, Arun;Ko, Young-Bae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.191-210
    • /
    • 2011
  • Topology management, which includes neighbor discovery, tracking and updating, is a key area that need to be dealt with appropriately to increase network performance. The use of directional antenna in Wireless Mesh Networks is beneficial in constructing backbone networks viewing the properties of directional antenna. The backbone links must be robust to obtain better network performance. In this paper, a simple yet effective topology protocol is presented that performs well compared to its predecessors. Our protocol constructs the topology with the constraints in the number of links per node. The full topology is constructed in two phases. The resultant topology is termed as Web-topology. The topology formed is robust, efficient, and scalable.

A Low Profile Dual-Microstripline-Fed 4-Arrayed Meander Monopole Antenna (소형 2중-급전 4-배열 미앤더 모노폴 안테나)

  • Jang, Yong-Woong;Lee, Sang-Woo
    • Journal of Broadcast Engineering
    • /
    • v.23 no.6
    • /
    • pp.925-930
    • /
    • 2018
  • In this paper, we present a low profile dual-microstripline-fed double 4-arrayed meander monopole antenna with a cross-type element back by separated four-segments mesh-type reflector. The cross-type element and separated four-segments mesh-type reflector leads to enhance radiation patterns and antenna gain characteristics. The measurement value of the proposed antenna show that it has dipole-like radiation pattern characteristics. The experimental peak gain of fabricated antenna is about 2.89 dBi, which presents relatively high gain characteristics for a low profile(small-size) one. This antenna can be applied mobile RFID(radio frequency identification) readers, small medical instruments, broadcasting and home-networking operations, and other low profile high-gain systems.

Investigation of Micro-vibration Isolation Performance of SMA Mesh Washer Isolator for Vibration Isolation of X-band Antenna (SMA 메쉬 와셔 진동 절연기를 적용한 X-band 안테나의 미소진동 절연성능 검토)

  • Jeon, Su-Hyeon;Kwon, Sung-Choel;Kim, Dae-Kwan;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.11
    • /
    • pp.988-995
    • /
    • 2014
  • Two axis gimbal type X-band antenna system has been widely used to effectively transmit the real time image data from the observation satellite to the ground station. The micro-vibration generated by stepping motor actuation and imperfect intermeshed gear configuration of the antenna is one of the sources to degrade the image quality. To guarantee a high quality image of high resolution observation satellite, micro-vibration isolation of X-band antenna is required. In this paper, the X-band antenna vibration isolation system using pseudoelastic SMA(Shape Memory Alloy) mesh washer has been newly suggested. The basic characteristics of the SMA mesh washer isolator proposed in this study has been measured through static load tests and its effectiveness has been demonstrated by the micro-vibration isolation test of the X-band antenna.