• Title/Summary/Keyword: Mesh Generation

Search Result 525, Processing Time 0.031 seconds

A Study on the Preprocessing for Finite Element Analysis of 3-Dimensional Structures.(With Focus on Geometric Modelling) (3차원 구조물의 유한요소해석 전처리에 관한 연구(기하학적 모델링을 중심으로))

  • 이재영;이진휴;한상기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.40-46
    • /
    • 1990
  • This paper introduces a geometric modelling system adopted in a newly developed preprocessor for finite element analysis of three dimensional structures. The formulation is characterized by hierarchical construction of structural model which consists of control points, curves, surfaces and solids. Various surface and solid modeling schemes based on blending functions and boundary representation are systematized for finite element mesh generation. The modeling system is integrated with model synthesis and operations which facilitate modelling of complex structures.

  • PDF

Automatic Generation of Finite Element Meshes on Midsurfaces in Shell Structures (셀 구조물에서 중립면에 대한 유한요소망의 자동생성)

  • Son Jun-Hee;Chae Soo-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1517-1525
    • /
    • 2004
  • Shell finite elements are widely used for the analysis of thin section objects such as sheet metal parts, automobile bodies and et al. due to their computational efficiency. Since many of input data for finite element analysis are given as solid models or triangulated surface models, one should extract midsurface information from these input data initially and then construct shell meshes on the extracted midsurfaces. In this paper, a method of generating shell elements on midsurfaces directly from input models has been proposed, in which midsurface generating process can be omitted. In order to construct shell meshes, the input models should be triangulated on surfaces first, and then tetrahedral elements are generated by using an advancing front method, and finally mid shell surfaces are obtained from tetrahedral meshes. Some examples are given to demonstrate the efficiency of the proposed method.

Development of a Pre-Processing Program for Flow Analysis Based on the Object-Oriented Programming Concept (OOP 개념에 기초한 유동해석용 전처리 프로그램 개발)

  • Myong, Hyon-Kook;Ahn, Jong-Ki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.1
    • /
    • pp.70-77
    • /
    • 2008
  • A pre-processing program based on the OOP(object-oriented programming) concept has been developed. The program consists of the input of a 2D or 3D flow problem to a CFD program by means of an user-friendly interface and the subsequent transformation of this input into a form suitable for the solver(PowerCFD) using unstructured cell-centered method. User-friendly GUI(graphic user interface) has been built on the base of MFC(Microsoft Foundation Class). The program is organized as modules by classes based on VTK(Visualization ToolKit)-library, and these classes are made to function through inheritance and cooperation which is an important and valuable concept of object-oriented programming. The major functions of this program are introduced and demonstrated, which include mesh generation, boundary settings, solver settings, generation of grid connectivity and geometric data etc.

Study on Combustion and Explosion Hazard of Rice Bran Dusts (쌀겨 분진의 연소 및 폭발 위험성에 관한 연구)

  • 이창우;현성호;이한철;허윤행
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.4
    • /
    • pp.93-98
    • /
    • 1999
  • We had investigated combustion properties of rice bran dusts. Decomposition of rice bran dusts with temperature were investigated using DSC and the weight loss according to temperature using TGA in order to find the thermal hazard of rice bran dusts, and the properties of dust explosion in variation of their dust with the same particle size. Using Hartman's dust explosion apparatus which estimate dust explosion by electric ignition after making dust disperse by compressed air, dust explosion experiments have been conducted by varying concentration and size of rice bran dust.According to the results for thermodynamic stability of rice bran dust, there are little change of initiation temperature of heat generation and heating value for used particle size. But initiation temperature of heat generation decreased with high heating rate whereas decomposition heat increased with particle size. Average maximum explosion pressure was $10kgf/cm^2$ for 60/70 mesh and $1.5mg/cm^2$ dust concentration.

  • PDF

Modeling of Groundwater Flow Using the Element-Free Galerkin (EFG) Method

  • Park, Yu-Chul;Darrel I. Leap
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.77-80
    • /
    • 2001
  • The element-free Galerkin (EFG) method is one of meshless methods, which is an efficient method of modeling problems of fluid or solid mechanics with complex boundary shapes and large changes in boundary conditions. This paper discusses the theory of the EFG method and its applications to modeling of groundwater flow. In the EFG method, shape functions are constructed based on the moving least square (MLS) approximation, which requires only set of nodes. The EFG method can eliminate time-consuming mesh generation procedure with irregular shaped boundaries because it does not require any elements. The coupled EFG-FEM technique was introduced to treat Dirichlet boundary conditions. A computer code EFGG was developed and tested for the problems of steady-state and transient groundwater flow in homogeneous or heterogeneous aquifers. The accuracy of solutions by the EFG method was similar to that by the FEM. The EFG method has the advantages in convenient node generation and flexible boundary condition implementation.

  • PDF

Automatic 3D model generation from 2D X-ray images

  • Le Minh Tuan;Kim Hae-Kwang
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.361-364
    • /
    • 2004
  • This paper describes an automatic 3D models generation algorithm based on 2D silhouette images, using X-ray camera without camera parameters. The algorithm takes a multi steps process approach. First, a series of 2D silhouette images is captured from different directions of object and then converted to binary images. An octree data structure is constructed for voxel-based representation of object. An estimate 3D volume of object can be reconstructed by intersecting voxels and the 2D silhouettes. The marching cube algorithm is applied to get triangle mesh representing of the obtained 3D model for rendering.

  • PDF

Review of Reverse Design Process for Freeform Envelope Using 3D Scanning (비정형 건축물의 외장재 제작 시공을 위한 3D 스캐닝에 의한 역 설계 프로세스 검토)

  • Kim, Sung-Jin;Park, Sung-Jin;Ryu, Hanguk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.17-18
    • /
    • 2015
  • In manufacturing industry, image scanning technique has made enormous progress in past decades. 3D models have been also very important to continuously monitor the related spatial information for freeform buildings. The process of shape making of 3D scanning is as follows: mesh surface segmentation, NURBS surface generation, and parametric solid model generation. We will review the process and applying process. Especially in the construction industry, 3D data collection by laser scanning has become an high quality 3D models. Therefore, in this research, we have an effort to review construction of reverse design process for freeform envelope using 3D scanning. The technology enables many 3D shape engineering and design parameterization of reverse engineering in the construction site.

  • PDF

Automatic Generation of Shell Elements by Using Chordal Axis Transform in 3D Structures (3 차원 구조물에서 Chordal Axis Transform 을 이용한 쉘 요소망의 자동생성)

  • Son, Jun-Hee;Chae, Soo-Won
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.700-705
    • /
    • 2004
  • Shell finite elements are widely used for the analysis of thin section objects such as sheet metal parts, automobile bodies and et al. due to their computational efficiency. Since many of input data for finite element analysis are given as solid models or triangulated surface models, one should extract midsurface information from these input data initially and then construct shell meshes on the extracted midsurfaces. In this paper, a method of generating shell elements on midsurfaces directly from input models have been proposed. In order to construct shell meshes, the input models should be triangulated on surfaces first, and then tetrahedral elements are generated by using an advancing front method, and finally mid shell surfaces are obtained from tetrahedral meshes. Some examples are given to demonstrate the efficiency of the proposed method.

  • PDF

Development of the CFD Program for the Cold Gas Flow Analysis in a High Voltage Circuit Breaker Using the CFD-CAD Integration (CFD-CAD 통합해석을 위한 초고압 차단기 내부의 냉가스 유동해석 프로그램 개발)

  • Lee, J.C.;Oh, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.30-32
    • /
    • 2001
  • There are many difficult problems in analyzing the flow characteristics in a high voltage circuit breaker such as shock wave and complex geometries, which may be either static or in relative motion. Although a variety of mesh generation techniques are now available, the generation of meshes around complicated, multi-component geometries like a gas circuit breaker is still a tedious and difficult task for the computational fluid dynamics. This paper presents the CFD program for analyzing the compressible flow fields in a high voltage gas circuit breaker using the Cartesian cut-cell method based on the CFD-CAD integration, which can achieve the accurate representation of the geometry designed by a CAD tools. This technique is frequently satisfied, and it will be almost universally so in the future, as the CFD-CAD traffic increase.

  • PDF

Characteristics of Ion Wind Generation According to Application of Acceleration Electrodes (가속전극의 적용에 따른 이온풍 발생 특성)

  • Kim, Chol-Gyu;Jang, Kyeong-Min;Kim, Jin-Gyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.5
    • /
    • pp.656-661
    • /
    • 2019
  • Currently, the devices to generate ion winds in air are mainly composed of corona electrodes and induction(ground) electrodes, of which the corona electrodes mainly use needles or wires as electrodes and the induction electrodes use plate electrodes of ring or mesh type. Ion winds can be effectively generated through a diverse combination of corona electrodes and induction electrodes mentioned above. However, only changing the form and structure of corona electrodes and induction electrodes has a limit in raising the speed of ion winds. This paper conducted a study on the characteristics of ion wind generation by additionally installing acceleration electrodes in addition to corona electrodes and induction electrodes to increase the speed of ion winds.