• Title/Summary/Keyword: Mesenteric Arteries

Search Result 36, Processing Time 0.031 seconds

Prevalence of anatomical variants in the branches of celiac and superior mesenteric arteries among Egyptians

  • Abdelrazek Abdelhady Sheta
    • Anatomy and Cell Biology
    • /
    • v.57 no.3
    • /
    • pp.353-362
    • /
    • 2024
  • Celiac trunk and superior mesenteric artery (SMA) are the main blood supply to the liver and pancreas. The data of anatomical variations in these arteries or their branches are very important clinically and surgically. The aim of this study was to describe the different variants in these arteries through the examination of the angiographs of a large series of Egyptian individuals. This research involved 389 selective angiographies to celiac artery, its branches, and the SMA. Anatomy of the target arteries of people who experienced visceral angiograph was reviewed and the data were recorded. From the total available angiograms in this work, 286 patients (73.52%) had the standard anatomy of celiac trunk and superior mesenteric arteries, and 103 patients (26.47%) had a single or multiple vessel variation. The inferior phrenic artery originates from celiac trunk in 2.05% of patients, while quadrifurcation of the celiac trunk was noticed in only 0.51% of patients. Absence of celiac trunk is also found in 0.51% of patients. Left gastric artery showed an abnormal origin from the splenic artery in 0.51% of patients. Quadrifurcation of common hepatic artery was also noticed. Variant anatomy of the left hepatic artery (LHA) was seen in 9.51% of patients, while variations of the right hepatic artery (RHA) were 14.13%. With the different origin of hepatic arteries, the gastroduodenal artery arose either from the LHA (2.82%), RHA (2.31%) or even from the celiac trunk (1.79%).

Calcium Sensitization Induced by Sodium Fluoride in Permeabilized Rat Mesenteric Arteries

  • Yang, En-Yue;Cho, Joon-Yong;Sohn, Uy-Dong;Kim, In-Kyeom
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.1
    • /
    • pp.51-57
    • /
    • 2010
  • It was hypothesized that NaF induces calcium sensitization in $Ca^{2+}$-controlled solution in permeabilized rat mesenteric arteries. Rat mesenteric arteries were permeabilized with $\beta$-escin and subjected to tension measurement. NaF potentiated the concentration-response curves to $Ca^{2+}$ (decreased $EC_{50}$ and increased $E_{max}$). Cumulative addition of NaF (4.0, 8.0 and 16 mM) also increased vascular tension in $Ca^{2+}$-controlled solution at pCa 7.0 or pCa 6.5, but not at pCa 8.0. NaF-induced vasocontraction and $GTP{\gamma}S$-induced vasocontraction were not additive. NaF-induced vasocontraction at pCa 7.0 was inhibited by pretreatment with Rho kinase inhibitors H1152 or Y27632 but not with a MLCK inhibitor ML-7 or a PKC inhibitor Ro31-8220. NaF induces calcium sensitization in a $Ca^{2+}$ dependent manner in $\beta$-escin-permeabilized rat mesenteric arteries. These results suggest that NaF is an activator of the Rho kinase signaling pathway during vascular contraction.

Superoxide Dismutase Activity in Small Mesenteric Arteries Is Downregulated by Angiotensin II but Not by Hypertension

  • Kang, Kyu-Tae;Sullivan, Jennifer C.;Pollock, Jennifer S.
    • Toxicological Research
    • /
    • v.34 no.4
    • /
    • pp.363-370
    • /
    • 2018
  • Many studies reported reduced antioxidant capacity in the vasculature under hypertensive conditions. However, little is known about the effects of antihypertensive treatments on the regulation of vascular antioxidant enzymes. Thus, we hypothesized that antihypertensive treatments prevent the reduction of antioxidant enzyme activity and expression in the small vessels of angiotensin II-induced hypertensive rats (ANG). We observed the small mesenteric arteries and small renal vessels of normotensive rats (NORM), ANG, and ANG treated with a triple antihypertensive therapy of reserpine, hydrochlorothiazide, and hydralazine (ANG + TTx). Systolic blood pressure was increased in ANG, which was attenuated by 2 weeks of triple therapy (127, 191, and 143 mmHg for NORM, ANG, and ANG + TTx, respectively; p < 0.05). Total superoxide dismutase (SOD) activity in the small mesenteric arteries of ANG was lower than that of NORM. The protein expression of SOD1 was lower in ANG than in NORM, whereas SOD2 and SOD3 expression was not different between the groups. Reduced SOD activity and SOD1 expression in ANG was not restored in ANG + TTx. Both SOD activity and SOD isoform expression in the small renal vessels of ANG were not different from those of NORM. Interestingly, SOD activity in the small renal vessels was reduced by TTx. Between groups, there was no difference in catalase activity or expression in both the small mesenteric arteries and small renal vessels. In conclusion, SOD activity in the small mesenteric arteries decreased by angiotensin II administration, but not by hypertension, which is caused by decreased SOD1 expression.

Different Mechanisms for $K^+-Induced$ Relaxation in Various Arteries

  • Suh, Suk-Hyo;Park, Sung-Jin;Choi, Jai-Young;Sim, Jae-Hoon;Kim, Young-Chul;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.4
    • /
    • pp.415-425
    • /
    • 1999
  • $[K^+]_o$ can be increased under a variety of conditions including subarachnoid hemorrhage. The increase of $[K^+]_o$ in the range of $5{\sim}15$ mM may affect tensions of blood vessels and cause relaxation of agonist-induced precontracted vascular smooth muscle $(K^+-induced$ relaxation). In this study, effect of the increase in extracellular $K^+$ concentration on the agonist-induced contractions of various arteries including resistant arteries of rabbit was examined, using home-made Mulvany-type myograph. Extracellular $K^+$ was increased in three different ways; from initial 1 to 3 mM, from initial 3 to 6 mM, or from initial 6 to 12 mM. In superior mesenteric arteries, the relaxation induced by extracellular $K^+$ elevation from initial 6 to 12 mM was the most prominent among the relaxations induced by the elevations in three different ways. In cerebral arteries, the most prominent relaxation was produced by the elevation of extracellular $K^+$ from initial 1 to 3 mM and a slight relaxation was provoked by the elevation from initial 6 to 12 mM. In superior mesenteric arteries, $K^+-induced$ relaxation by the elevation from initial 6 to 12 mM was blocked by $Ba^{2+}\;(30\;{\mu}M)$ and the relaxation by the elevation from 1 to 3 mM or from 3 to 6 mM was not blocked by $Ba^{2+}.$ In cerebral arteries, however, $K^+-induced$ relaxation by the elevation from initial 3 to 6 mM was blocked by $Ba^{2+},$ whereas the relaxation by the elevation from 1 to 3 mM was not blocked by $Ba^{2+}.$ Ouabain inhibited all of the relaxations induced by the extracellular $K^+$ elevations in three different ways. In cerebral arteries, when extracellular $K^+$ was increased to 14 mM with 2 or 3 mM increments, almost complete relaxation was induced at 1 or 3 mM of initial $K^+$ concentration and slight relaxation occurred at 6 mM. TEA did not inhibit $Ba^{2+}-sensitive$ relaxation at all and NMMA or endothelial removal did not inhibit $K^+-induced$ relaxation. Most conduit arteries such as aorta, carotid artery, and renal artery were not relaxed by the elevation of extracellular $K^+.$ Among conduit arteries, trunk of superior mesenteric artery and basilar artery were relaxed by the elevations of $[K^+]_o.$ These data suggest that $K^+-induced$ relaxation has two independent components, $Ba^{2+}-sensitive$ and $Ba^{2+}-insensitive$ one and there are different mechanisms for $K^+-induced$ relaxation in various arteries.

  • PDF

Mechanisms Underlying Relaxations Caused by Angiotensin II and Its Analogs in Isolated Rabbit Mesenteric Artery

  • Hong, Ki-Whan;Park, Ji-Young;Kim, Chi-Dae;Lee, Won-Suk;Rhim, Byung-Yong;Yoo, Sung-Eun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.4
    • /
    • pp.393-402
    • /
    • 1997
  • In the present study, we characterized the angiotensin II (AII)-induced relaxations in the phenylephrine-precontracted rabbit mesenteric arteries with endothelium. 1) AII-induced relaxation was consistently observed in the rabbit mesenteric arteries with and without endothelium, but not in the aortic segment with endothelium. 2) AII-induced endothelium-dependent relaxation was markedly inhibited by $N^w-nitro-L-arginine$ (L-NNA, $100\;{\mu}M$), methylene blue ($10\;{\mu}M$) and LY83583 ($10\;{\mu}M$), respectively. 3) Inhibition of cyclooxygenase with indomethacin ($10\;{\mu}M$) strongly decreased the vasorelaxant response to AII irrespective of the presence of endothelium. 4) 7-Ethoxyresorufin ($1\;{\mu}M$) and clotrimazole ($1\;{\mu}M$), inhibitors of cytochrome P-450-dependent arachidonic acid metabolism, greatly attenuated the vasodilator response to AII. 5) Carbacyclin, arachidonic acid and prostaglandin $F_{2{\alpha}}$ ($PGF_{2{\alpha}}$) caused concentration-dependent relaxations in the mesenteric artery with endothelium, which were inhibited by L-NNA and methylene blue. 6) AII and $PGF_{2{\alpha}}$ significantly stimulated cyclic GMP formation in the mesenteric arteries with endothelium, which was inhibited by L-NNA and methylene blue, respectively. 7) AII enhanced synthesis of $PGF_{2{\alpha}}$ and 6-keto $PGF_{1{\alpha}}$ from the arterial segments with endothelium, which was inhibitable by indomethacin, but not by L-NNA. In conclusion, the vasorelaxant responses to AII of the rabbit mesenteric artery with endothelium are subserved by arachidonic acid and its metabolites produced via activation of cyclooxygenase and cytochrome P-450 enzyme as well as by nitric oxide.

  • PDF

Differential effects of saturated and unsaturated fatty acids on vascular reactivity in isolated mesenteric and femoral arteries of rats

  • Vorn, Rany;Yoo, Hae Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.403-409
    • /
    • 2019
  • Free fatty acid (FFA) intake regulates blood pressure and vascular reactivity but its direct effect on contractility of systemic arteries is not well understood. We investigated the effects of saturated fatty acid (SFA, palmitic acid), polyunsaturated fatty acid (PUFA, linoleic acid), and monounsaturated fatty acid (MUFA, oleic acid) on the contractility of isolated mesenteric (MA) and deep femoral arteries (DFA) of Sprague-Dawley rats. Isolated MA and DFA were mounted on a dual wire myograph and phenylephrine (PhE, $1-10{\mu}M$) concentration-dependent contraction was obtained with or without FFAs. Incubation with $100{\mu}M$ of palmitic acid significantly increased PhE-induced contraction in both arteries. In MA, treatment with $100{\mu}M$ of linoleic acid decreased $1{\mu}M$ PhE-induced contraction while increasing the response to higher PhE concentrations. In DFA, linoleic acid slightly decreased PhE-induced contraction while $200{\mu}M$ oleic acid significantly decreased it. In MA, oleic acid reduced contraction at low PhE concentration (1 and $2{\mu}M$) while increasing it at $10{\mu}M$ PhE. Perplexingly, depolarization by 40 mM KCl-induced contraction of MA was commonly enhanced by the three fatty acids. The 40 mM KCl-contraction of DFA was also augmented by linoleic and oleic acids while not affected by palmitic acid. SFA persistently increased alpha-adrenergic contraction of systemic arteries whereas PUFA and MUFA attenuated PhE-induced contraction of skeletal arteries. PUFA and MUFA concentration-dependent dual effects on MA suggest differential mechanisms depending on the types of arteries. Further studies are needed to elucidate underlying mechanisms of the various effects of FFA on systemic arteries.

Increase in $Na^+-Ca^{2+}$ Exchange Activity in Sarcolemma Isolated from Mesenteric Arteries of Spontaneously Hypertensive Rats

  • Lee, Shin-Woong;Lee, Jeung-Soo;Park, Young-Joo;Park, In-Sook
    • Archives of Pharmacal Research
    • /
    • v.12 no.2
    • /
    • pp.128-134
    • /
    • 1989
  • $Na^+-Ca^{2+}$ exchange process in sarcolemmal vesicles isolated from mesenteric arteries of Wistar-Kyoto normotensive(WKY) and spontaneously hypertensive rats(SHR) was investigated. The sarcolemmal fractions isolated after homogenization and sucrose density gradient centrifugation were enriched with 5'-nucleotidase and ouabain sensitive, $K^+-dependent$ phosphatase activities. When the vesicles were loaded with $Na^+$, a time dependent $Ca^{2+}$ uptake was observed. However, very little $Ca^{2+}$ uptake was observed when the vesicles were loaded with $K^+$, or $Ca^{2+}$ uptake of the $Na^+-loaded$ vesicles was carried out in high sodium medium so that there was no sodium gradient. When the vesicles loaded with $Ca^{2+}$ by $Na^+-Ca^{2+}$ exchange were diluted into potassium medium containing EGTA, $Ca^{2+}$ was rapidly released from the vesicles. $Na^+-dependent\;Ca^{2+}$ uptake was increased in SHR compared to WKY, but passive efflux of preaccumulated $Ca^{2+}$ from the vesicles was decreased in SHR. The data indicate that the membrane vesicles of rat mesenteric arteries exhibit $Na^+-Ca^{2+}$ exchange activity. It is also suggested that changes of this process in vascular smooth muscle cell membrane of SHR may be involved in higher intracellular $Ca^{2+}$ concentration and higher basal tone in SHR.

  • PDF

Non-occlusive Mesenteric Ischemia (NOMI) Secondary to Traumatic Hemorrhagic Shock: Case Report (외상성 출혈성 쇼크 환자에서 발생한 비 폐쇄성 장간막 허혈)

  • Lim, Kyoung Hoon;Jung, Hee Kyung;Cho, Jayun;Lee, Sang Cjeol;Park, Jinyoung
    • Journal of Trauma and Injury
    • /
    • v.27 no.4
    • /
    • pp.204-207
    • /
    • 2014
  • Non-occlusive mesenteric ischemia (NOMI) encompasses all forms of mesenteric ischemia with patent mesenteric arteries. NOMI is commonly caused by decreased cardiac output resulting in hypoperfusion of peripheral mesenteric arteries. We report a case of NOMI secondary to hemorrhagic shock and rhabdomyolysis due to trauma. A 42-year-old man presented to our trauma center following a pedestrian trauma. On arrival, he was drowsy and in a state of hemorrhagic shock. He was found to have multiple fractures, both lung contusion and urethral rupture. An initial physical examination and abdominal computed tomography (CT) scan revealed no evidence of intra-abdominal injury. High doses of catecholamine were administered for initial 3 days due to unstable vital sign. On day 25 of hospitalization, follow-up abdominal CT scan demonstrated that short segment of small bowel loop was dilated and bowel wall was not enhanced. During exploratory laparotomy, necrosis of the terminal ileum with intact mesentery was detected and ileocecectomy was performed. His postoperative course was uneventful and is under rehabilitation.

A portal quadrad with triple hepatic arteries

  • Claire E Stoudemire;Caitlin N Sachsenmeier;Brittney L Link;Faith M Klein;Randy Kulesza
    • Anatomy and Cell Biology
    • /
    • v.56 no.2
    • /
    • pp.276-279
    • /
    • 2023
  • The arterial support of the liver is most commonly from the celiac trunk via the proper hepatic artery (PHA). The PHA divides into left and right branches: the right hepatic artery (RHA) supplies the right and caudate lobes while the left hepatic artery (LHA) supplies the left and quadrate lobes. Aberrant hepatic arteries are relatively common, and the most frequent contributors are the superior mesenteric artery and left gastric artery. Herein we present findings from postmortem dissection of an abdominal cavity that revealed a rare combination of reported variations. Specifically, this subject had three extrahepatic arteries - a replaced LHA (rLHA), a PHA, and a replaced RHA (rRHA). The rLHA originated from the left gastric and the rRHA originated from the superior mesenteric artery. Knowledge of these variations is important for surgical and radiological procedures to avoid complications during treatment and improve patient outcomes.

Isolated Bypass to the Superior Mesenteric Artery for Chronic Mesenteric Ischemia

  • Jun, Hee Jae
    • Journal of Chest Surgery
    • /
    • v.46 no.2
    • /
    • pp.146-149
    • /
    • 2013
  • Mesenteric ischemic symptoms appear only when two of the three major splanchnic arteries from the abdominal aorta are involved. Recently, we encountered a case of chronic mesenteric ischemia in a 50-year-old female patient caused by atherosclerotic obstruction of the celiac trunk and superior mesenteric artery. She was treated with a retrograde bypass graft from the right common iliac artery to the superior mesenteric artery (SMA) in a C-loop configuration. Complete revascularization is recommended for treatment of intestinal ischemia. When the celiac trunk is a not suitable recipient vessel, bypass grafting to the SMA alone appears to be both an effective and durable procedure for treating intestinal ischemia.