• Title/Summary/Keyword: Memory-Based Learning

Search Result 555, Processing Time 0.027 seconds

Text Classification by Deep Learning Fusion (딥러닝 융합에 의한 텍스트 분류)

  • Shin, Kwang-Seong;Ham, Seo-Hyun;Shin, Seong-Yoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.385-386
    • /
    • 2019
  • This paper proposes a fusion model based on Long-Short Term Memory networks (LSTM) and CNN deep learning methods, and applied to multi-category news datasets, and achieved good results. Experiments show that the fusion model based on deep learning has greatly improved the precision and accuracy of text sentiment classification.

  • PDF

An Attention Method-based Deep Learning Encoder for the Sentiment Classification of Documents (문서의 감정 분류를 위한 주목 방법 기반의 딥러닝 인코더)

  • Kwon, Sunjae;Kim, Juae;Kang, Sangwoo;Seo, Jungyun
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.4
    • /
    • pp.268-273
    • /
    • 2017
  • Recently, deep learning encoder-based approach has been actively applied in the field of sentiment classification. However, Long Short-Term Memory network deep learning encoder, the commonly used architecture, lacks the quality of vector representation when the length of the documents is prolonged. In this study, for effective classification of the sentiment documents, we suggest the use of attention method-based deep learning encoder that generates document vector representation by weighted sum of the outputs of Long Short-Term Memory network based on importance. In addition, we propose methods to modify the attention method-based deep learning encoder to suit the sentiment classification field, which consist of a part that is to applied to window attention method and an attention weight adjustment part. In the window attention method part, the weights are obtained in the window units to effectively recognize feeling features that consist of more than one word. In the attention weight adjustment part, the learned weights are smoothened. Experimental results revealed that the performance of the proposed method outperformed Long Short-Term Memory network encoder, showing 89.67% in accuracy criteria.

Optimization of Cyber-Attack Detection Using the Deep Learning Network

  • Duong, Lai Van
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.159-168
    • /
    • 2021
  • Detecting cyber-attacks using machine learning or deep learning is being studied and applied widely in network intrusion detection systems. We noticed that the application of deep learning algorithms yielded many good results. However, because each deep learning model has different architecture and characteristics with certain advantages and disadvantages, so those deep learning models are only suitable for specific datasets or features. In this paper, in order to optimize the process of detecting cyber-attacks, we propose the idea of building a new deep learning network model based on the association and combination of individual deep learning models. In particular, based on the architecture of 2 deep learning models: Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM), we combine them into a combined deep learning network for detecting cyber-attacks based on network traffic. The experimental results in Section IV.D have demonstrated that our proposal using the CNN-LSTM deep learning model for detecting cyber-attacks based on network traffic is completely correct because the results of this model are much better than some individual deep learning models on all measures.

Supervised learning-based DDoS attacks detection: Tuning hyperparameters

  • Kim, Meejoung
    • ETRI Journal
    • /
    • v.41 no.5
    • /
    • pp.560-573
    • /
    • 2019
  • Two supervised learning algorithms, a basic neural network and a long short-term memory recurrent neural network, are applied to traffic including DDoS attacks. The joint effects of preprocessing methods and hyperparameters for machine learning on performance are investigated. Values representing attack characteristics are extracted from datasets and preprocessed by two methods. Binary classification and two optimizers are used. Some hyperparameters are obtained exhaustively for fast and accurate detection, while others are fixed with constants to account for performance and data characteristics. An experiment is performed via TensorFlow on three traffic datasets. Three scenarios are considered to investigate the effects of learning former traffic on sequential traffic analysis and the effects of learning one dataset on application to another dataset, and determine whether the algorithms can be used for recent attack traffic. Experimental results show that the used preprocessing methods, neural network architectures and hyperparameters, and the optimizers are appropriate for DDoS attack detection. The obtained results provide a criterion for the detection accuracy of attacks.

A Study on Learning Effect of Serious Game for Memory Improvement (기억력 향상 기능성 게임의 학습 효과에 대한 연구)

  • Lee, Hwa-Min;Hong, Min
    • The Journal of Korean Association of Computer Education
    • /
    • v.14 no.5
    • /
    • pp.39-46
    • /
    • 2011
  • Serious games are designed for special purposes of education, training, treatment as well as game-like fun and entertainment. Recently, domestic and foreign market of serious game are growing rapidly. By dissemination of smartphone, the global market for serious game will be expanded for various purposes and users. In this paper, we design and implement serious game 'QUICK REMEMBER 20' for memory improvement using smartphone. We analyze game users based on socio-demographic characteristics and evaluate the learning effectiveness of this game with statistic method.

  • PDF

A Research on Accuracy Improvement of Diabetes Recognition Factors Based on XGBoost

  • Shin, Yongsub;Yun, Dai Yeol;Moon, Seok-Jae;Hwang, Chi-gon
    • International journal of advanced smart convergence
    • /
    • v.10 no.2
    • /
    • pp.73-78
    • /
    • 2021
  • Recently, the number of people who visit the hospital due to diabetes is increasing. According to the Korean Diabetes Association, it is statistically indicated that one in seven adults aged 30 years or older in Korea suffers from diabetes, and it is expected to be more if the pre-diabetes, fasting blood sugar disorders, are combined. In the last study, the validity of Triglyceride and Cholesterol associated with diabetes was confirmed and analyzed using Random Forest. Random Forest has a disadvantage that as the amount of data increases, it uses more memory and slows down the speed. Therefore, in this paper, we compared and analyzed Random Forest and XGBoost, focusing on improvement of learning speed and prevention of memory waste, which are mainly dealt with in machine learning. Using XGBoost, the problem of slowing down and wasting memory was solved, and the accuracy of the diabetes recognition factor was further increased.

Performance Analysis and Identifying Characteristics of Processing-in-Memory System with Polyhedral Benchmark Suite (프로세싱 인 메모리 시스템에서의 PolyBench 구동에 대한 동작 성능 및 특성 분석과 고찰)

  • Jeonggeun Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.142-148
    • /
    • 2023
  • In this paper, we identify performance issues in executing compute kernels from PolyBench, which includes compute kernels that are the core computational units of various data-intensive workloads, such as deep learning and data-intensive applications, on Processing-in-Memory (PIM) devices. Therefore, using our in-house simulator, we measured and compared the various performance metrics of workloads based on traditional out-of-order and in-order processors with Processing-in-Memory-based systems. As a result, the PIM-based system improves performance compared to other computing models due to the short-term data reuse characteristic of computational kernels from PolyBench. However, some kernels perform poorly in PIM-based systems without a multi-layer cache hierarchy due to some kernel's long-term data reuse characteristics. Hence, our evaluation and analysis results suggest that further research should consider dynamic and workload pattern adaptive approaches to overcome performance degradation from computational kernels with long-term data reuse characteristics and hidden data locality.

  • PDF

A SE Approach for Machine Learning Prediction of the Response of an NPP Undergoing CEA Ejection Accident

  • Ditsietsi Malale;Aya Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.18-31
    • /
    • 2023
  • Exploring artificial intelligence and machine learning for nuclear safety has witnessed increased interest in recent years. To contribute to this area of research, a machine learning model capable of accurately predicting nuclear power plant response with minimal computational cost is proposed. To develop a robust machine learning model, the Best Estimate Plus Uncertainty (BEPU) approach was used to generate a database to train three models and select the best of the three. The BEPU analysis was performed by coupling Dakota platform with the best estimate thermal hydraulics code RELAP/SCDAPSIM/MOD 3.4. The Code Scaling Applicability and Uncertainty approach was adopted, along with Wilks' theorem to obtain a statistically representative sample that satisfies the USNRC 95/95 rule with 95% probability and 95% confidence level. The generated database was used to train three models based on Recurrent Neural Networks; specifically, Long Short-Term Memory, Gated Recurrent Unit, and a hybrid model with Long Short-Term Memory coupled to Convolutional Neural Network. In this paper, the System Engineering approach was utilized to identify requirements, stakeholders, and functional and physical architecture to develop this project and ensure success in verification and validation activities necessary to ensure the efficient development of ML meta-models capable of predicting of the nuclear power plant response.

An Analysis on Learning Effects of Character Animation Based-Mobile Foreign Language Vocabulary Learning App (캐릭터 애니메이션 기반 모바일 외국어 어휘 학습 앱 효과 분석)

  • Kim, Insook;Choi, Minsuh;Ko, Hyeyoung
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.12
    • /
    • pp.1526-1533
    • /
    • 2018
  • This study aims to provide implications for mobile foreign language vocabulary learning app by analyzing the effects of mobile vocabulary learning app based on character animation. For this purpose, we applied the learning application designed with character animation and text, and the application designed with text only to two groups of learners, and analyzed the effect. As a result, we found that application designed with character animation and text was useful in recognition frequency and duration concerning learning. Regarding learning outcomes, we found that it is useful not only in memory but also in learning interest and motivation. This study provides implications for learning method and design development of mobile-based foreign language vocabulary learning application which actively using recently.

Unsupervised learning algorithm for signal validation in emergency situations at nuclear power plants

  • Choi, Younhee;Yoon, Gyeongmin;Kim, Jonghyun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1230-1244
    • /
    • 2022
  • This paper proposes an algorithm for signal validation using unsupervised methods in emergency situations at nuclear power plants (NPPs) when signals are rapidly changing. The algorithm aims to determine the stuck failures of signals in real time based on a variational auto-encoder (VAE), which employs unsupervised learning, and long short-term memory (LSTM). The application of unsupervised learning enables the algorithm to detect a wide range of stuck failures, even those that are not trained. First, this paper discusses the potential failure modes of signals in NPPs and reviews previous studies conducted on signal validation. Then, an algorithm for detecting signal failures is proposed by applying LSTM and VAE. To overcome the typical problems of unsupervised learning processes, such as trainability and performance issues, several optimizations are carried out to select the inputs, determine the hyper-parameters of the network, and establish the thresholds to identify signal failures. Finally, the proposed algorithm is validated and demonstrated using a compact nuclear simulator.