• Title/Summary/Keyword: Memory machine

Search Result 491, Processing Time 0.035 seconds

Trends in the Use of Artificial Intelligence in Medical Image Analysis (의료영상 분석에서 인공지능 이용 동향)

  • Lee, Gil-Jae;Lee, Tae-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.453-462
    • /
    • 2022
  • In this paper, the artificial intelligence (AI) technology used in the medical image analysis field was analyzed through a literature review. Literature searches were conducted on PubMed, ResearchGate, Google and Cochrane Review using the key word. Through literature search, 114 abstracts were searched, and 98 abstracts were reviewed, excluding 16 duplicates. In the reviewed literature, AI is applied in classification, localization, disease detection, disease segmentation, and fit degree of registration images. In machine learning (ML), prior feature extraction and inputting the extracted feature values into the neural network have disappeared. Instead, it appears that the neural network is changing to a deep learning (DL) method with multiple hidden layers. The reason is thought to be that feature extraction is processed in the DL process due to the increase in the amount of memory of the computer, the improvement of the calculation speed, and the construction of big data. In order to apply the analysis of medical images using AI to medical care, the role of physicians is important. Physicians must be able to interpret and analyze the predictions of AI algorithms. Additional medical education and professional development for existing physicians is needed to understand AI. Also, it seems that a revised curriculum for learners in medical school is needed.

Adverse Effects on EEGs and Bio-Signals Coupling on Improving Machine Learning-Based Classification Performances

  • SuJin Bak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.133-153
    • /
    • 2023
  • In this paper, we propose a novel approach to investigating brain-signal measurement technology using Electroencephalography (EEG). Traditionally, researchers have combined EEG signals with bio-signals (BSs) to enhance the classification performance of emotional states. Our objective was to explore the synergistic effects of coupling EEG and BSs, and determine whether the combination of EEG+BS improves the classification accuracy of emotional states compared to using EEG alone or combining EEG with pseudo-random signals (PS) generated arbitrarily by random generators. Employing four feature extraction methods, we examined four combinations: EEG alone, EG+BS, EEG+BS+PS, and EEG+PS, utilizing data from two widely-used open datasets. Emotional states (task versus rest states) were classified using Support Vector Machine (SVM) and Long Short-Term Memory (LSTM) classifiers. Our results revealed that when using the highest accuracy SVM-FFT, the average error rates of EEG+BS were 4.7% and 6.5% higher than those of EEG+PS and EEG alone, respectively. We also conducted a thorough analysis of EEG+BS by combining numerous PSs. The error rate of EEG+BS+PS displayed a V-shaped curve, initially decreasing due to the deep double descent phenomenon, followed by an increase attributed to the curse of dimensionality. Consequently, our findings suggest that the combination of EEG+BS may not always yield promising classification performance.

Modeling of Virtual Switch in Cloud System (클라우드 시스템의 가상 스위치 모델링)

  • Ro, Cheul-Woo
    • Journal of Digital Convergence
    • /
    • v.11 no.12
    • /
    • pp.479-485
    • /
    • 2013
  • Virtualization is a promising approach to consolidating multiple online services onto a smaller number of computing resources. A virtualized server environment allows computing resources to be shared among multiple performance isolated platforms called virtual machines. Through server virtualization software, applications servers are encapsulated into VMs, and deployed with APIs on top generalized pools of CPU and memory resources. Networking and security have been moved to a software abstraction layer that transformed computing, network virtualization. And it paves the way for enterprise to rapidly deploy networking and security for any application by creating the virtual network. Stochastic reward net (SRN) is an extension of stochastic Petri nets which provides compact modeling facilities for system analysis. In this paper, we develop SRN model of network virtualization based on virtual switch. Measures of interest such as switching delay and throughput are considered. These measures are expressed in terms of the expected values of reward rate functions for SRNs. Numerical results are obtained according to the virtual switch capacity and number of active VMs.

Operating System level Dynamic Power Management for Robot (로봇을 위한 운영체제 수준의 동적 전력 관리)

  • Choi Seungmin;Chae Sooik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.5 s.335
    • /
    • pp.63-72
    • /
    • 2005
  • This paper describes a new approach for the operating system level power management to reduce the energy consumed in the IO devices in a robot platform, which provides various functions such as navigation, multimedia application, and wireless communication. The policy proposed in the paper, which was named the Energy-Aware Job Schedule (EAJS), rearranges the jobs scattered so that the idle periods of the devices are clustered into a time period and the devices are shut down during their idle period. The EAJS selects a schedule that consumes the minimum energyamong the schedules that satisfy the buffer and time constraints. Note that the burst job execution needs a larger memory buffer and causes a longer time delay from generating the job request until to finishing it. A prototype of the EAJS is implemented on the Linux kernel that manages the robot system. The experiment results show that a maximum $44\%$ power saving on a DSP and a wireless LAN card can be obtained with the EAJS.

Confidence Value based Large Scale OWL Horst Ontology Reasoning (신뢰 값 기반의 대용량 OWL Horst 온톨로지 추론)

  • Lee, Wan-Gon;Park, Hyun-Kyu;Jagvaral, Batselem;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.43 no.5
    • /
    • pp.553-561
    • /
    • 2016
  • Several machine learning techniques are able to automatically populate ontology data from web sources. Also the interest for large scale ontology reasoning is increasing. However, there is a problem leading to the speculative result to imply uncertainties. Hence, there is a need to consider the reliability problems of various data obtained from the web. Currently, large scale ontology reasoning methods based on the trust value is required because the inference-based reliability of quantitative ontology is insufficient. In this study, we proposed a large scale OWL Horst reasoning method based on a confidence value using spark, a distributed in-memory framework. It describes a method for integrating the confidence value of duplicated data. In addition, it explains a distributed parallel heuristic algorithm to solve the problem of degrading the performance of the inference. In order to evaluate the performance of reasoning methods based on the confidence value, the experiment was conducted using LUBM3000. The experiment results showed that our approach could perform reasoning twice faster than existing reasoning systems like WebPIE.

The Incremental Learning Method of Variable Slope Backpropagation Algorithm Using Representative Pattern (대표 패턴을 사용한 가변 기울기 역전도 알고리즘의 점진적 학습방법)

  • 심범식;윤충화
    • Journal of the Korea Society of Computer and Information
    • /
    • v.3 no.1
    • /
    • pp.95-112
    • /
    • 1998
  • The Error Backpropagation algorithm is widely used in various areas such as associative memory, speech recognition, pattern recognition, robotics and so on. However, if and when a new leaning pattern has to be added in order to drill, it will have to accomplish a new learning with all previous learning pattern and added pattern from the very beginning. Somehow, it brings about a result which is that the more it increases the number of pattern, the longer it geometrically progress the time required by leaning. Therefore, a so-called Incremental Learning Method has to be solved the point at issue all by means in case of situation which is periodically and additionally learned by numerous data. In this study, not only the existing neural network construction is still remained, but it also suggests a method which means executing through added leaning by a model pattern. Eventually, for a efficiency of suggested technique, both Monk's data and Iris data are applied to make use of benchmark on machine learning field.

  • PDF

Design of Incremental K-means Clustering-based Radial Basis Function Neural Networks Model (증분형 K-means 클러스터링 기반 방사형 기저함수 신경회로망 모델 설계)

  • Park, Sang-Beom;Lee, Seung-Cheol;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.833-842
    • /
    • 2017
  • In this study, the design methodology of radial basis function neural networks based on incremental K-means clustering is introduced for learning and processing the big data. If there is a lot of dataset to be trained, general clustering may not learn dataset due to the lack of memory capacity. However, the on-line processing of big data could be effectively realized through the parameters operation of recursive least square estimation as well as the sequential operation of incremental clustering algorithm. Radial basis function neural networks consist of condition part, conclusion part and aggregation part. In the condition part, incremental K-means clustering algorithms is used tweights of the conclusion part are given as linear function and parameters are calculated using recursive least squareo get the center points of data and find the fitness using gaussian function as the activation function. Connection s estimation. In the aggregation part, a final output is obtained by center of gravity method. Using machine learning data, performance index are shown and compared with other models. Also, the performance of the incremental K-means clustering based-RBFNNs is carried out by using PSO. This study demonstrates that the proposed model shows the superiority of algorithmic design from the viewpoint of on-line processing for big data.

Large-Scale Text Classification with Deep Neural Networks (깊은 신경망 기반 대용량 텍스트 데이터 분류 기술)

  • Jo, Hwiyeol;Kim, Jin-Hwa;Kim, Kyung-Min;Chang, Jeong-Ho;Eom, Jae-Hong;Zhang, Byoung-Tak
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.5
    • /
    • pp.322-327
    • /
    • 2017
  • The classification problem in the field of Natural Language Processing has been studied for a long time. Continuing forward with our previous research, which classifies large-scale text using Convolutional Neural Networks (CNN), we implemented Recurrent Neural Networks (RNN), Long-Short Term Memory (LSTM) and Gated Recurrent Units (GRU). The experiment's result revealed that the performance of classification algorithms was Multinomial Naïve Bayesian Classifier < Support Vector Machine (SVM) < LSTM < CNN < GRU, in order. The result can be interpreted as follows: First, the result of CNN was better than LSTM. Therefore, the text classification problem might be related more to feature extraction problem than to natural language understanding problems. Second, judging from the results the GRU showed better performance in feature extraction than LSTM. Finally, the result that the GRU was better than CNN implies that text classification algorithms should consider feature extraction and sequential information. We presented the results of fine-tuning in deep neural networks to provide some intuition regard natural language processing to future researchers.

Congestion Control Mechanism using Real Time Signaling Information in ATM based MPLS Network (ATM 기반 MPLS 망에서 실시간 신호정보를 이용한 체증 제어 기법)

  • Ahn, Gwi-Im
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.4
    • /
    • pp.462-469
    • /
    • 2007
  • ATM protocol has the techniques such as cell discarding priority, traffic shaping and traffic policing. ATM based MPLS(Multiprotocol Label Switching) is discussed for its provisioning QoS commitment capabilities, traffic engineering and smooth migration for BcN using conventional ATM infra in Korea. This paper proposes preventive congestion control mechanism for detecting HTR(Hard To Reach) LSP(Label Switched Path) in ATM based MPLS systems. In particular, we decide HTR LSP using real time signaling information(etc., PTI,AIS/RDI) for applying HTR concept in circuit switching to ATM based MPLS systems and use those session gap and percentage based control algorithm that were used in conventional PSTN call controls. We concluded that it maximized the efficiency of network resources by restricting ineffective machine attempts. Proposed control can handle 208% call processing and more than 147% success call, than those without control. It can handle 187% BHCA(Busy Hour Call Attempts) with 100 times less than use of exchange memory.

  • PDF

Retargetable Instruction-Set Simulator for Energy Consumption Monitoring (에너지 소비 모니터링을 위한 재목적 인스트럭션-셋 시뮬레이터)

  • Ko, Kwang-Man
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.3
    • /
    • pp.462-470
    • /
    • 2011
  • Retargetability is typically achieved by providing target machine information, ADL, as input. The ADL are used to specify processor and memory architectures and generate software toolkit including compiler, simulator, etc. Simulator are critical components of the exploration and software design toolkit for the system designer. They can be used to perform diverse tasks such as verifying the functionality and/or timing behavior of the system, and generating quantitative measurements(e.g., power energy consumption) which can be used to aid the design process. In this paper, we generate the energy consumption estimation simulator through ADL. For this goal, firstly, we describes the energy consumption estimation and monitoring informations on the ADL based on EXPRESSION. Secondly, we generate the energy estimation and monitoring simulation library and then constructs the simulator, RenergySim. Lastly, we represent the energy estimations results for MIPS R4000 ADL description. From this subjects, we contribute to the efficient architecture developments and prompt SDK generation through programmable experiments in the field of mobile software development.