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[Abstract] 

In this paper, we propose a novel approach to investigating brain-signal measurement technology using 

Electroencephalography (EEG). Traditionally, researchers have combined EEG signals with bio-signals (BSs) 

to enhance the classification performance of emotional states. Our objective was to explore the synergistic effects 

of coupling EEG and BSs, and determine whether the combination of EEG+BS improves the classification 

accuracy of emotional states compared to using EEG alone or combining EEG with pseudo-random signals 

(PS) generated arbitrarily by random generators. Employing four feature extraction methods, we examined four 

combinations: EEG alone, EG+BS, EEG+BS+PS, and EEG+PS, utilizing data from two widely-used open datasets. 

Emotional states (task versus rest states) were classified using Support Vector Machine (SVM) and Long Short-Term 

Memory (LSTM) classifiers. Our results revealed that when using the highest accuracy SVM-FFT, the average 

error rates of EEG+BS were 4.7% and 6.5% higher than those of EEG+PS and EEG alone, respectively. We 

also conducted a thorough analysis of EEG+BS by combining numerous PSs. The error rate of EEG+BS+PS 

displayed a V-shaped curve, initially decreasing due to the deep double descent phenomenon, followed by an 

increase attributed to the curse of dimensionality. Consequently, our findings suggest that the combination of 

EEG+BS may not always yield promising classification performance. 
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[요   약]

본 논문에서 우리는 뇌 신호 측정 기술 중 하나인 뇌전도를 활용한 새로운 접근방식을 제안한다. 전통적으로 

연구자들은 감정 상태의 분류성능을 향상시키기 위해 뇌전도 신호와 생체신호를 결합해왔다. 우리의 

목표는 뇌전도와 결합된 생체신호의 상호작용 효과를 탐구하고, 뇌전도+생체신호의 조합이 뇌전도 단독사용 

또는 임의로 생성된 의사 무작위 신호와 결합한 경우에 비해 감정 상태의 분류 정확도를 향상시킬 수 

있는지를 확인한다. 네 가지 특징추출 방법을 사용하여 두 개의 공개 데이터셋에서 얻은 데이터 기반의 

뇌전도, 뇌전도+생체신호, 뇌전도+생체신호+무작위신호, 및 뇌전도+무작위신호의 네 가지 조합을 조사했다. 

감정 상태 (작업 대 휴식 상태)는 서포트 벡터 머신과 장단기 기억망 분류기를 사용하여 분류했다. 우리의 

결과는 가장 높은 정확도를 가진 서포트 벡터 머신과 고속 퓨리에 변환을 사용할 때 뇌전도+생체신호의 

평균 오류율이 뇌전도+무작위신호와 뇌전도 단독 신호만을 사용한 경우에 비해 각각 4.7% 및 6.5% 높았음을 

보여주었다. 우리는 또한 다양한 무작위 신호를 결합하여 뇌전도+생체신호의 오류율을 철저하게 분석했다. 

뇌전도+생체신호+무작위신호의 오류율 패턴은 초기에는 깊은 이중 감소 현상으로 인해 감소하다가 차원의 

저주로 인해 증가하는 V자 모양을 나타냈다. 결과적으로, 우리의 연구 결과는 뇌파와 생체신호의 결합이 

항상 유망한 분류성능을 보장할 수 없음을 시사한다.

▸주제어: 차원의 저주, 심층 이중 강하, 뇌파, 특징추출, 기계학습

∙First Author: SuJin Bak, Corresponding Author: SuJin Bak
  *SuJin Bak (soojin7897@snu.ac.kr), AI Signal Processing Lab., Advanced Institute of Convergence Technology
∙Received: 2023. 09. 02, Revised: 2023. 10. 16, Accepted: 2023. 10. 18.

Copyright ⓒ 2023 The Korea Society of Computer and Information                                               
      http://www.ksci.re.kr pISSN:1598-849X | eISSN:2383-9945



134   Journal of The Korea Society of Computer and Information 

I. Introduction

Emotion plays a vital role in activities such as 

perception, motivation, learning, and rational 

decision-making. As the emotional aspect is 

emphasized, various indicators should be 

considered to clearly evaluate the perceived 

emotion. In previous studies, many indicators such 

as facial images, gestures, and speech were 

introduced [1, 2]. These indicators have proven the 

superiority of emotion detection. For example, 

facial expressions are known to easily identify a 

person’s emotional state [3, 4]. Some researchers 

have reported differences in positive, negative, and 

neutral emotions for each gesture [5, 6].

However, conflicting results have also been 

reported in which emotional detection was found 

difficult using these indicators. A recent study 

showed inconsistency between the subjective 

responses of participants who watched a short 

emotional (neutral, happy, angry, disgust, fear, 

sadness, and surprise) performance of an actress 

and the scale was evaluated using FaceReader 4.0, 

an automatic facial expression recognition software 

[7]. Thus, most of these indicators used for 

evaluating emotional studies are not always 

universal [8], and can predict the probability of 

variation of the emotional state depending on the 

participant’s will [9]. However, bio-signals (BS) can 

be used as objective indicators to detect varying 

emotional states because they cannot be freely [10].

BS is a time-varying reaction within the human 

body and can be divided into two main categories: 

physical and physiological BSs. Physical BSs are 

measured as the result of muscle activity and 

include pupil size, eye movements, blinks, head 

movements, respiration, and voice whereas 

physiological signals are more directly related to the 

body’s vital functions. Electrocardiography (ECG) 

and blood volume pulse (BVP) are associated with 

cardiac activity. The galvanic skin response (GSR) 

measures the sweat released by an exocrine activity, 

and electromyography (EMG) measures the muscle 

excitability by recording the electrical signals from 

skeletal muscles. In particular, emotion recognition 

based on electroencephalogram (EEG) is the 

currently used method in the affective computing 

area with challenges regarding feature extraction 

methods for achieving the best classification 

performance [11-13]. In this study, BS is named 

bio-signal excluding EEG. 

Several studies have shown successful cases of 

detecting specific emotions using BS and EEG 

together [14-17]. The advantage of BSs, including 

EEG, is that the activities of the autonomous 

nervous system (ANS) limit people’s conscious or 

intentional emotional control. It is impossible for a 

human to regulate their BS to their own will. 

Therefore, it can be used as an objective indicator. 

However, despite the advantages of combining BS 

with EEG signals, we have raised some issues for 

the following reasons:

1) Although human emotions can be classified 

using features extracted from BSs combined with 

EEG, as previous studies have demonstrated, most 

studies only utilize them in an integrated manner 

without considering the correlation between EEG 

and BSs. Correlation is a statistic that measures the 

extent to which two variables move together in 

relation to each other. Correlation analysis is 

important as several studies have demonstrated that 

correlations between the two data reflect diverse 

information, which can affect the classification 

performance of multivariate data [18, 19]. Despite 

the importance of this correlation, it is not yet 

known how the interrelationship between EEG 

signals and BSs influences emotion classification. 

According to a study [20], the accuracy (61.80 %) for 

emotion state classification combined with EEG and 

GSR, respiration, blood pressure, and temperature 

was lower than that for emotion state classification 

(63.33 %) using a single-channel EEG. The 

researchers concluded that although EEG signals 

performed better than physiological signals, we also 

considered the possibility that there is no 

correlation between EEG and BSs for emotion 
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classification. This was supported by the results of 

the study by Kim et al. They examined participants’ 

physiological responsiveness to repeated exposure 

to stimuli in negative environments. There were no 

significant differences in the heart rate between the 

pre-and post-states (p >.05) [21]. 

2) The performance of emotional recognition or 

classification by EEGs coupled with BSs can depend 

on various feature extraction and classification 

methods. For instance, when emotions (neutral, 

happy, and sad) were classified with EEG signals 

using extracted power spectra and wavelet energy 

entropy (single and fused), it was reported that the 

fusion features (91.18 %) provided higher accuracy 

than single features (89.17 %) using an surport 

vector machine (SVM) [22]. Another study 

demonstrated that the deep physiological affect 

network (DPAN) and the fully connected long 

short-term memory (FC-LSTM) classifiers achieved 

accuracies of 78.72 % and 68.45 % in the valence 

classification, respectively, and accuracies of 79.03 

% and 66.56 %, respectively, in the arousal 

classification [23]. The accuracy difference between 

the two classifiers was greater than 10 %. These 

results suggested that the accuracy is dependent 

on feature extraction and/or classification 

methods, regardless of the combination of the BSs.

Therefore, our study aims to investigate whether 

classification performances and benefits can be 

gained by combining EEG signals with BS and/or PS 

together. We compared the classified error rates of 

EEG only, EEG+PS, EEG+BS, and EEG+BS+PS. We 

used four feature extraction methods, and SVM and 

LSTM classifiers for the classification performance 

comparison using AMIGOS [37] and DEAP [38] known 

as the representative public datasets. The 

classification performances (validations) of the SVM 

and LSTM models were also conducted using the 

area under the receiver operating characteristic 

curve (AUC) to check whether the classification 

results were reliable or not. We further investigated 

to find an appropriate number of PSs to improve the 

classification performances of EEG only and EEG+BS.

II. Related Works

Change in BSs leading to emotional recognition 

was the basis for previous studies that reported 

that various BSs change together depending on 

human emotions [24-26]. For instance, people with 

high blood pressure exhibited reduced emotional 

responses to positive and negative stimuli [27]. In 

addition, under negative emotional conditions such 

as anger and anxiety, GSR showed a gradual 

decline [28], and the temperature of the hand skin 

decreased [29]. On the other hand, heart rate 

increased during the emotional states of hate or 

anger [30]. These studies were verified from a 

physiological perspective. However, because of 

these results, although most researchers assumed 

that BS can significantly improve classification 

performance, there were a few research studies on 

the effects of BSs. Most studies are still used to 

combine EEG signals with BSs indiscriminately, 

without considering the characteristics of BSs [31]. 

However, it is necessary to investigate the adverse 

effects in detail and the EEG signals may be 

combined with artificially generated 

pseudo-random signals (PSs) as well as measured 

BSs during EEG measurements. PSs were arbitrarily 

generated by random generators and are not 

related to any physiological responses during EEG 

measurement. When EEG only and EEG+BS are 

combined with PS, it acts as a type of noise to 

create conditions similar to those in the real world. 

Noises are known as the main contributors for 

deteriorating classification performances (high 

classification error rates), and the more these noise 

signals, the poorer the classification performance. 

It has been already known that the process of 

obtaining brainwave signals includes several noise 

signals. However, it has recently been reported that 

appropriate noise may improve the classification 

performance [32]. For instance, one study found 

that the error rate of data with mild noise is lower 

than that of the original data using ImageNet Large 

Scale Visual Recognition Challenge (ILSVRC), which 
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is a popular ImageNet challenge for image 

classification [33]. Another study reported that the 

noise created from random generators helps to 

distinguish disease recognition easily using neural 

network models [34]. Noise serves as an enhanced 

feature set that increases the difference between 

the diseased and non-diseased states. The effect of 

this mild noise is called the deep double descent 

[35]. However, previous studies have not fully 

identified the reason for this phenomenon. Despite 

the performance improvement caused by mild 

noise, it is also necessary to consider whether 

more unnecessary information has been provided; 

poor classification performance results in a curse 

of dimensionality [36]. This is because the curse of 

dimensionality is invoked when the amount of 

information needed is out of range.

III. Mathods

Fig, 1. depicts the overall experimental process. 

We used two publicly available datasets: “A dataset 

for Mood, personality and affect research on 

Individuals and GrOupS (AMIGOS)” [37], and 

“Datasets for Emotion Analysis using EEG, 

Physiological and video signals (DEAP)” [38]. The 

AMIGOS acquired EEG and BS while watching 16 

short videos from 40 people. Likewise, the DEAP 

also acquired EEG and BSs from 32 people who 

watched some of the 40 music videos in a minute. 

In both datasets, neuro-bio signals were captured 

from the subjects during emotion elicitation. We 

compared the classified error rates between the 

task and rest states because they led to the highest 

classification performance (lowest error rates) due 

to two distinct mental states [39]. It is noteworthy 

to investigate whether the combined EEG signals 

with BSs were efficient in terms of classification 

and prediction performances for the two datasets. 

Table 1 briefly summarizes the AMIGOS and DEAP 

open datasets.

Fig. 1. Overall experimental conceps

Items AMIGOS DEAP

Subjects (N) 40 32

Number of 

Trials
16 40

Number of 

Channels

17 ch Composed 

of 14 ch EEG 

and 3 ch BSs

40 ch Composed 

of 32 ch EEG 

and 8 ch BSs

Sampling rate 128 Hz

segmentation
Rest during 5 s

Task during 5 s

Table 1. Summary of AMIGOS and DEAP

2.1 AMIGOS datasets

EEG signals were recorded using an Emotiv EPOC 

Neuroheadset containing 14 electrodes for AF3, F7, 

F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and 

AF4 channels (chs). Simultaneously, BSs such as 

ECG and GSR were also recorded with three 

electrodes for left/right ECG channels and for the 

GSR channel. Each participant owned a total of 17 

channels, consisting of 14 ch EEG and 3 ch BS. All 

EEG data were preprocessed with a sampling 

frequency of 128 Hz, with ECG and GSR 

downsampled from 256 Hz to 128 Hz. To remove 

the artifacts, we applied a bandpass filter with a 

cut-off frequency of approximately 8–45 Hz of EEG 

and 20–128 Hz of ECG along with a low-pass filter 

at 5 Hz of GSR according to [40]. These filtering 

ranges were established because they represent 

information about changes in emotional states in 

each biological signal, including EEG [41].

2.2 DEAP datasets

EEG signals were recorded using a Biosemi 

ActiveTwo system containing 32 electrodes for FP1, 

AF3, F3, F7, FC5, FC1, C3, T7, CP5, CP1, P3, P7, 
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Combination AMIGOS DEAP

AMIGOS

‘EEG Only’ + PS (3 ch) ‘EEG＋BS’ + PS (3 ch)

‘EEG Only’ + PS (6 ch) ‘EEG＋BS’ + PS (6 ch)

‘EEG Only’ + PS (9 ch) ‘EEG＋BS’ + PS (9 ch)

‘EEG Only’ + PS (12 ch) ‘EEG＋BS’ + PS (12 ch)

‘EEG Only’ + PS (15 ch) ‘EEG＋BS’ + PS (15 ch)

‘EEG Only’ + PS (18 ch) ‘EEG＋BS’ + PS (18 ch)

‘EEG Only’ + PS (21 ch) ‘EEG＋BS’ + PS (21 ch)

‘EEG Only’ + PS (24 ch) ‘EEG＋BS’ + PS (24 ch)

‘EEG Only’ + PS (27 ch) ‘EEG＋BS’ + PS (27 ch)

‘EEG Only’ + PS (30 ch) ‘EEG＋BS’ + PS (30 ch)

‘EEG Only’ + PS (30 ch) ‘EEG＋BS’ + PS (30 ch)

DEAP

‘EEG Only’ + PS (8 ch) ‘EEG＋BS’ + PS (8 ch)

‘EEG Only’ + PS (16 ch) ‘EEG＋BS’ + PS (16 ch)

‘EEG Only’ + PS (24 ch) ‘EEG＋BS’ + PS (24 ch)

‘EEG Only’ + PS (32 ch) ‘EEG＋BS’ + PS (32 ch)

‘EEG Only’ + PS (40 ch) ‘EEG＋BS’ + PS (40 ch)

‘EEG Only’ + PS (48 ch) ‘EEG＋BS’ + PS (48 ch)

‘EEG Only’ + PS (56 ch) ‘EEG＋BS’ + PS (56 ch)

‘EEG Only’ + PS (64 ch) ‘EEG＋BS’ + PS (64 ch)

‘EEG Only’ + PS (72 ch) ‘EEG＋BS’ + PS (72 ch)

‘EEG Only’ + PS (80 ch) ‘EEG＋BS’ + PS (80 ch)

Table 3. Case 2 combination: Original datasets combined with various number of PS channels.

PO3, O1, OZ, PZ, FP2, AF4, FZ, F4, F8, FC6, FC2, CZ, 

C4, T8, CP6, CP2, P4, P8, PO4, and O2 channels. 

Simultaneously, they recorded eight BSs, including 

horizontal and vertical electrooculography (EOG), 

zygomaticus and trapezius EMGs, GSR, respiration, 

plethysmograph and temperature. Each person 

owned a total of 40 channels, consisting of 32 chs of 

EEG and 8 chs of BS. The preprocessing stage of all 

data was similar to that of AMIGOS. Specifically, to 

remove the artifacts, we additionally applied a 

bandpass filter at approximately 8–45 Hz of 

EEG.Except for EEG, the other BSs used a 5 Hz 

low-pass filter in accordance with [40].

2.3 Signal combinations for classification 

performance comparison

We used two combinations (Case 1 combination 

listed in Table 2 and Case 2 combination listed in 

Table 3) of EEG signals combined with BSs and/or 

PSs for our classification and predictive study. 

• Case 1 combination: As listed in Table 2, we 

selected the combination of EEG only, EEG+BS, and 

EEG+PS to observe the combined effects on the 

classified error rates using SVM and LSTM. In 

AMIGOS, PSs generated by random functions had the 

same data format as that of BSs for three channels. 

Similarly, in DEAP, the generated PSs matched the 

data format with BSs for eight channels.

Combination AMIGOS DEAP

EEG Only EEG (14 ch) EEG (32 ch)

EEG+BS
EEG (14 ch) 

+BS (3 ch)

EEG (32 ch)

+ BS (8 ch)

EEG+PS
EEG (14 ch)

+ PS (3 ch)

EEG (32 ch) 

+ PS (8 ch)

Table 2. Case 1 combination: Three types of dataset 

combinations: ‘EEG Only’, ‘EEG+BS’, AND ‘EEG+PS’

• Case 2 combination: To explore the effects of 

combining BSs in the AMIGOS and DEAP datasets, 

we compared the classification error rates of EEG 

only and EEG+BS by adding multiples of three or 

eight PS channels, as listed in Table 3. The added 

number of PS channels was set to be the multiple 

of the number of BS channels in the two datasets. 

2.4 PS artificially created by random number 

generators

Pseudo-random numbers were produced using 

random number generators. The quality of the 

random number generator is very important 

because it can affect the error rate results for 

emotional classification. One way to control the 

quality of a random generator is periodicity. The 
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precision of a random number generator is 

expressed as. The larger the value, the stronger 

the randomness and the longer the processing 

time. In other words, the smaller the precision 

period, the weaker the randomness [42]. Based on 

this principle, we generated PSs using three 

random generators with different period 

randomness as listed in Table 4, focusing on how 

close they are to a truly random function.

Generators
Precision period 

(
 

)
Randomness

dsfmt19937   
High 

randomness

mcg16807   
Low 

randomness

mlfg633164 
Medium 

randomness

Table 4. Error rates based on Case 2 combination 

(EEG+BS+PS and EEG+PS) with PS randomness 

using SVM.

2.5 Feature extractions and reliable classification 

results

We used feature extraction to obtain useful 

information from the raw data. It is divided into 

three main categories: time-domain analysis, 

frequency-domain analysis, and time-frequency 

domain analysis. We focused on frequency analysis, 

which facilitates the understanding of the transient 

characteristics of physiological signals, including 

EEG signals. We extracted the features from the 

preprocessed AMIGOS and DEAP datasets with a 

response of 5 s from the task and rest states for 

classification for relatively low error rates. This 

range was considered the middle part of the signal 

by excluding the beginning and end of each 

recording, which is highly prone to movement 

artifacts [9]. We utilized four extraction methods, 

namely, power spectrum density (PSD), fast Fourier 

transform (FFT), known as representative feature 

extraction methods for frequency analysis, 

independent component analysis (ICA), and 

principal component analysis (PCA) as frequently 

used methods.Unlike our research, most studies 

have demonstrated that data combining EEG with 

BS contribute to classification performance without 

considering the adverse effects (high classification 

error rates) of BSs, and asserting only the 

advantages of BSs based on four 

easy-to-implement features [43, 44].

The PSD is independent of the frequency 

resolution, further facilitating the comparison of 

fluctuating signals. PSD is calculated by Fourier 

transforming the estimated autocorrelation 

sequence, which is found by nonparametric 

methods [45]. One of these methods is Welch’s 

method of estimating the PSD representing the 

energy density distribution power over the 

frequency domain of signals. In the PSD, we divided 

the filtered signals into segments of 100 sample 

lengths to obtain the Welch PSD estimate. The 

signal segment was multiplied by a Hamming 

window of 100 sample lengths. The number of 

nested samples was 50. The number of lengths of 

the discrete Fourier transform (DFT) was 256, 

which produced a frequency resolution of 2/256 

radian/sample. The PSD feature was 1 points, 

where refers to the length of the DFT. Unlike PSD, 

FFT depends on frequency intervals by 

transforming data that vary over time into 

frequency components. However, it is not known 

whether a signal occurs at a certain point in time 

because the Fourier transform extracts the 

frequency component generated during the entire 

time domain. In this study, FFTs were converted 

from original signals to 129 samples of the same 

length as the samples in PSD. ICA-based feature 

extraction attempted to find linear transformations 

that maintain possible data-to-data independence; 

however, PCA seeks to extract data-based features 

that reflect human perceptual characteristics well. 

We extracted features from the ICA and PCA with 

the same number of samples as the PSD and FFT.

We also implemented two commonly used 

classifiers, SVM and LSTM, to investigate whether 

the simultaneous use of EEG and BSs was useful 

for improving the classification and prediction. We 

calculated error rates as a classification 
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performance indicator because neural networks 

perform training and testing based on 

errors.Moreover, we compared the classification 

and prediction of EEG signals by adding BS and/or 

PS to determine whether it can improve the 

performance of EEG+BS based on a deep double 

descent [46] and whether it is related to the curse 

of dimensionality [47].

The SVM classifier was trained using a 

radial-basis kernel function. We used 10-fold 

cross-validation, where the total dataset was 

divided by 90 % of the training data set and 10 % 

of the test set, and then classification tests were 

performed with 10 % of the test set. At this time, 

the tested error rates were calculated ten times 

and averaged thereafter. This process was used to 

avoid overfitting, which is responsible for the 

increasing number of errors in real-world datasets 

by overlearning the training data sets. The error 

rates were calculated by Number of correct 

predictions/Total number of predictions. We 

verified whether the calculated error rates are 

reliable based on the AUC, known as the area 

under the receiver operating characteristic (ROC) 

curve. The AUC can be obtained by measuring the 

entire two-dimensional area under the ROC curves. 

The x-axis and y-axis of the ROC curve represent 

the false positive rate (FPR) and true positive rate 

(TPR), respectively. FPR is also known as the 

probability of a false alarm, which represents a 

false acceptance rate. TPR is defined as the true 

acceptance rate, which is the opposite concept of 

FPR. The lower the FPR and the higher the TPR, 

the higher is the reliability of the classification 

results. The larger the AUC value, the higher is the 

reliability of the classification results. For reliable 

classification results, the AUC values should be 

within a range of 0.5 –1(a reliable performance at 

0.5, and the most reliable performance at 1).

We defined an LSTM network consisting of a 

layer with 200 hidden units and dropout probability 

with a default value of 0.2, to prevent overfitting in 

a dropout layer. Furthermore, adaptive moment 

estimation (ADAM) [48] was used as a training 

process with a learning rate of 0.005. To prevent 

the gradients from exploding, the gradient 

threshold was set to be one during training. We 

decreased the learning rate after 125 epochs by 

multiplying by a factor of 0.2. The 

root-mean-square error (RMSE) was used as the 

regression loss function. The LSTM network was 

used for 10-fold cross-validation. Each 

cross-validation iteration was of 250 epochs. The 

LSTM results were also verified by the AUC.

2.6 Pearson’s correlation of EEG, EEG+BS, and 

EEG+PS

Pearson correlation was analyzed to measure the 

strength of linearity between two variables. A linear 

relationship is said to establish if the change in one 

variable is proportional to the change in the other. 

A strong linearity between two variables means that 

the relationship between variables is well-plotted by 

straight lines in the x-y plane. We calculated 

Pearson correlation coefficients to determine the 

relationship between EEGs, and between EEG and 

BS or PS in the AMIGOS and DEAP datasets.

2.7 Statistical analysis

Levene’s test was used to assess the homogeneity 

of the variance of the features. Thereafter, a one-way 

analysis of variance (ANOVA) was applied to 

determine the differences between classification 

error rates among EEG only, EEG+BS, and EEG+PS by 

four features, ICA, PCA, PSD, and FFT based on SVM. 

The Dunnett T3 was conducted as a post hoc test 

based on the studentized maximum modulus [49].

IV. Results

3.1 Error rates based on Case 1 combination 

(EEG Only, EEG+BS, and EEG+PS) using SVM

We calculated the error rates of the task 

classification from Case 1 combination (EEG only, 

EEG+BS, and EEG+PS) using SVM for the four 

feature extraction methods. We would like to 
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determine whether the simultaneous use of EEG 

and BS versus other combinations can improve the 

error rates for task classification. Fig. 2. illustrates 

the classified error rates for the classification 

between the task and the rest states in AMIGOS 

(Fig. 2(a)) and DEAP (Fig. 2(b)) using SVM. 

In Fig. 1(a), the classified error rates are low in the 

order of FFT, PSD, ICA, and PCA. Lower error rates 

indicate higher classification accuracies. PCA had an 

AUC value of 0.27, was unreliable, and did not meet 

the AUC value of larger than 0.5. Furthermore, there 

was a statistically significant difference in the error 

rates in the ICA and FFT for Case 1 combination 

(   ). This indicates a distinct error difference 

among the three combinations (EEG only vs. EEG+BS 

vs. EEG+PS) in ICA and FFT. For the FFT method, the 

error rates were lower in the order of EEG only (0.2 

%), EEG+PS (2.0 %), and EEG+BS (6.7 %). For the ICA 

method, the error rates were lower in the order of 

EEG+PS (60.1 %), EEG only (64.2 %), and EEG+BS (68.8 

%). This is based on FFT-SVM with the highest 

classification accuracy, and EEG+BS shows relatively 

6.5% and 4.7% higher error rates compared to 

EEG-only use and EEG+PS. As a result, we found that 

the concurrent use of EEG+BS is less accurate than 

EEG only or EEG+PS alone. This result contrasts with 

previous results in which EEG+BS exhibited high 

performance (low error rate) [50].

Similarly, the classified error rates in Fig. 2(b) 

are low in the order of FFT, ICA, PSD, and PCA. In 

both the FFT and ICA methods, statistically 

significant differences were observed in the error 

rates. This means that there is a distinct error 

difference among the three combinations (EEG only 

vs. EEG+BS vs. EEG+PS) in ICA and FFT. 

Specifically, EEG only (5.0 %) or EEG+PS (5.0 %) 

showed lower error rates than EEG+BS (6.0 %) for 

FFT. In ICA, EEG only (47.0 %) or EEG+PS (48.0 %) 

also showed lower error rates than EEG+BS (51.0 

%). Thus, EEG+BS is still less accurate than 

EEG+PS, which is the same result as that shown in 

Fig. 2(a). However, we expect to achieve the highest 

classification performance (lowest error rates) in 

EEG+BS, because BS is measured simultaneously 

during EEG measurement and is directly related to 

physiological responses. However, we obtained the 

opposite results. EEG+PS has a higher classification 

performance than EEG+BS, even though PS is an 

arbitrarily generated signal and is not related to 

physiological responses during EEG measurement.

3.2 Validation of SVM classifier for four feature 

extraction methods

To check the reliability of the classified error 

rates by the SVM classifier, we used the AUC 

corresponding to the area under the ROC curve. 

Fig. 3 depicts the two-dimensional ROC curves for 

the four extraction methods in the AMIGOS (Fig. 

3(a)) and DEAP (Fig. 3(b)). As the AUC increased, 

we obtained more reliable classification results, 

further indicating that the FFT has the highest 

reliability for error rates in both datasets. 

Fig. 3(a) depicts the reliable results except for 

the PCA in the order of FFT, PSD, ICA, and PCA, 

which is of the same order as that of the SVM 

classification results. The AUC value ranges from 0 

–1 (maximum) and should be at least greater than 

0.5, which is a reliable classified error rate by the 

extraction method. The AUC values of FFT, PSD, 

ICA, and PCA were 1.00, 0.65, 0.51, and 0.27, 

respectively. The classified error rates using 

PCAwere not reliable for the AMIGOS dataset using 

the SVM classifier. In contrast, Fig. 2(b) illustrates 

highly reliable results in the order of FFT (1.00), 

PCA (0.71), PSD (0.69), and ICA (0.64). The four 

methods with AUC values larger than 0.5, indicate 

reliable classification results for the DEAP dataset 

using the SVM classifier. These extreme 

experimental result, such as FFT showing AUC=1, 

can be derived as a problem of overfitting or 

underfitting, but according to prior studies [51-52], 

we excluded this possibility because the superiority 

of FFT has already been demonstrated.

3.3 Correlations of EEG, EEG+BS, and EEG+PS

To systematically investigate the correlations 

between EEG and BSs, we calculated Pearson’s 
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Fig. 2. Bar graphs showing calculated classified error rates using SVM for binary classification (i.e., task vs. 

rest states) based on four feature extractions: (a) AMIGOS dataset divided into ‘EEG only’ (14 ch EEG), 

EEG+BS (14 ch EEG and 3 ch bio-signals), and EEG+ PS (14 ch EEG and 3 ch pseudorandom signals). 

However, the PCA has an AUC value of 0.27 and is unreliable as it does not meet the AUC value of greater 

than 0.5. (b) DEAP dataset divided into EEG only (32 ch EEG), EEG+BS (32 ch EEG and 8 ch bio-signals), 

and EEG+PS (32 ch EEG and 8 ch pseudo random signals). Note that EEG+PS shows a lower error rate than 

EEG+ BS in both AMIGOS and DEAP datasets under four feature extraction methods. 

correlation coefficients composed of EEG only, 

EEG+BS, and EEG+PS to consider the effects of BS 

in both AMIGOS and DEAP. 

Fig. 4 illustrates (a) the correlation between the 

F3 and F4 channels in EEGs among the frontal 

regions associated with emotions, and (b) the 
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Fig. 3. Two-dimensional ROC curves for verifying the 

accuracy of the SVM classifier by each feature extraction 

method: (a) AMIGOS, and (b) DEAP. The validation of 

the model utilized the AUC known as the area under the 

ROC curve. The closer the AUC’s value is to one, the 

more reliable the classifiers are. In both datasets, the 

FFT results are the most reliable. In Fig. 4(a), it 

indicates that the AUC increases in the order of FFT, 

PSD, ICA, and PCA. The model validation should indicate 

an AUC level rate of 0.5 or higher. Our AUC levels are 

greater than 0.5 except for PCA in all methods. In Fig. 

4(b), it indicates that area of AUC increases in the order 

of FFT, PSD, PCA, and ICA. It also shows the AUC 

levels are greater than 0.5 in all methods. 

correlation between F3 in EEGs and GSR in BSs 

from AMIGOS. Fig. 4(a) depicts a strong positive 

correlation (     ) whereas Fig. 4(b) 

depicts a disorderly relationship (   ). We 

obtained the correlations between channels in 

EEGs, which further indicated strong correlations 

similar to those in Fig. 4(a). The blue line in Fig. 

4(a) shows a linear relationship. This implies that 

the F3 channel varies in the same direction as that 

of the F4 channel. However, GSR has no relation to 

the F3 channel as shown in Fig. 4(b).

Fig. 5 depicts the correlation (a) between the Fp1 

and Fp2 channels, among the frontal regions 

associated with emotions, and (b) between tEMG and 

Fp1 from DEAP. These results are similar to those 

shown in Fig. 4 using AMIGOS. Fig. 5(a) depicts a 

positive correlation at (     ). We 

expected that the disorderly relationship 

(   ) between tEMG and Fp1 would have 

poor classification performance. The correlations 

between all EEG signals and BSs are similar in both 

Fig. 4(a) and Fig. 5(a) from AMIGOS and DEAP.

We further calculated the correlation coefficient 

between one channel among the EEG signals and 

one PS signal generated by the highly randomized 

generator as listed in Table 4. We found a weak 

positive correlation between F3 (EEG) and PS in 

AMIGOS (     ) and Fp1 (EEG) and PS 

in DEAP (     ). Although no 

significant correlations were found between all the 

PS signals, we found some correlations in the 

number of PS signals with the lowest error rate. 

Presumably, one of the reasons why EEG+BS 

exhibited poorer classification performance when 

compared to the EEG Only or EEG+PS may be due 

to the lack of correlation between EEGs and BSs.

3.4 Error rates based on Case 2 combination 

(EEG+BS+PS and EEG+PS) with PS randomness 

using SVM

To systematically investigate the error rates for 

classification depending on the artificial signals 

such as PSs, we calculated the error rates using 

the SVM classifier for two data combinations of 

EEG+BS+PS and EEG+PS with three different PS 

randomness as listed in Table 4. In Fig. 6 (AMIGOS) 

and Fig. 7 (DEAP), the classified error rates of the 

four feature extraction methods using the SVM are 

shown for the case of EEG+BS+PS and EEG+PS with 

three randomness. 

In Fig. 6, the averaged classifier error rates by 
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Fig. 4. Correlation analysis (a) between F3 and F4 in EEGs, and (b) between F3 in EEGs and GSR in BSs from AMIGOS. 

A positive correlation is observed between F3 and F4; however, no relevance was observed between F3 and GSR. It indicates 

that no relationship was observed between EEG and BS, and implied as having poor error rates in EEG+BS.

the extraction methods using AMIGOS were found 

larger in the order of PCA, ICA, PSD, and FFT, 

regardless of the data combination of EEG+BS+PS 

(77.823, 63.733, 48.390, and 6.787 %) or EEG+PS 

(75.880, 62.783, 49.073, and 4.647 %). As depicted in 

Fig. 5(a), EEG+PS has lower error rates than EEG+ 

BS+PS, except for PSD (almost equal or slightly 

higher). However, for medium and low randomness, 

EEG+PS has higher error rates than EEG+BS+PS, 

except for ICA (Fig. 6(b)) and PCA (Fig. 6(c)). 

However, it is difficult to conclude the results 

owing to the randomness.

Fig. 7 depicts the averaged classifier error rates 

obtained by the extraction methods using the DEAP 

dataset. They are illustrated in the error rates for 

EEG+BS+PS in the order of PCA, ICA, PSD, and FFT 

(58.667, 51.700, 50.967, and 15.800 %) and EEG+PS 

(53.533, 50.833, 50.733, and 17.933 %). This result 

indicates slightly lower error rates in EEG+PS than 

those in EEG+BS+PS, except for FFT. However, the 

differences in the error rates between EEG+BS+PS 

and EEG+PS with randomness were not clearly 

observed. We found the differences in error rates 

in accordance with feature extraction methods, but 
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Fig. 5. Correlation analysis (a) between Fp2 and Fp1 in EEGs, and (b) between tEMG in BSs and Fp1 in EEGs from DEAP. 

A positive correlation is observed between Fp2 and Fp1; however, no relevance was observed between Fp1 and tMEG. It 

indicates that no relationship is observed between EEG and BS, and implied as having poor error rates in EEG+BS.

failed to find any significant error rates dependent 

on the randomness. We can use any random 

number generators to create the PS signals in our 

study.

3.5 Error rates of EEG+BS and EEG Only by 

adding PS channels based on Case 2 combination 

using SVM

We generated a diverse number of PS channels 

from dsfmt19937, the Mersenne Twister-style, 

which is the most frequently used and is treated as 

one of the high-random generators. The generated 

PS was added to EEG+BS and EEG only to 

investigate the error rates for the classification of 

the task and rest states. We calculated the 

classification error rates by increasing the number 

of PS channels added to EEG+PS and EEG+BS+PS. 

Fig. 8. depicts the grand averaged error rates over 

10 times from three extraction methods excluding 

PCA due to the low AUC value (less than 0.5) using 

SVM for the binary classification (i.e., task vs. rest 

states) in AMIGOS (a) and DEAP (b). For the EEG 



Adverse Effects on EEGs and Bio-Signals Coupling on Improving Machine Learning-Based Classification Performances   145

Fig. 6. Averaged classified error rates using SVM with the PS randomness for EEG + BS + PS and EEG + PS 

from AMIGOS: (a) high randomness in PS, (b) medium randomness in PS, and (c) low randomness in PS. Here, 

PCA should be excluded because the AUC value (0.27) is not met. PS was obtained from the random generators 

listed in Table 4, and not related the physiological states at all. Regardless of the combination of BS + PS or PS 

with EEG, it shows higher error rates in the order of PCA, ICA, PSD, and FFT for all randomness. It suggests 

that the classification results are influenced by feature extraction methods, but not randomness. 

only+PS case, the classified error rates show a 

decreasing tendency for the AMIGOS dataset and 

an increasing tendency for the DEAP dataset with 

an increase in the number of PS channels. 

However, for the EEG+BS+PS case, the error rates 

were initially decreased by the deep double descent 

[36] and then increased by the curse of 

dimensionality [37] for both datasets with an 

increasing number of PS channels. The inflection 

points of EEG+BS+PS appeared at 15–16 PS 

channels, as depicted in Fig. 8. This is based on 

the deep double descent phenomenon, and adding 

an appropriate number of PS data reduces the 

classification error rates. Although previous work 

has not yet revealed the reason for the occurrence 

of deep double descent, we may expect that hyper 

parameters, such as learning rate and batch size, 

affecting the performance of classifier models can 

be optimally estimated while approaching the 

number of PSs corresponding to this inflection 

point. However, we found that further addition of 

the number of PSs beyond this inflection point 

leads to the degradation of the classification 

performance, similar to the curse of 

dimensionality. Overall, PS can regulate the 

computational performance (high and low error 

rates) for classification, which indicates that 

combining EEG+BS with an appropriate number of 

PSs can achieve enhanced performances. Unlike 

EEG+BS, EEG only does not show V-shapes, and its 

cause is unknown. In other words, in the case of 

EEG alone use, the V-shape neither appears in Fig. 

8 using SVM nor appears in Fig. 11 using LSTM, 

but EEG+BS shows a V-shape in all cases.



146   Journal of The Korea Society of Computer and Information 

Fig. 7. Averaged classified error rates using SVM with randomness for EEG+BS+PS and EEG+PS from DEAP: (a) 

high randomness in PS, (b) medium randomness in PS, and (c) low randomness in PS. BS was obtained in the 

human emotional states. PS was obtained from the random generators listed in Table 4 which is not related to 

any physiological state. The DEAP dataset has the lowest error rate of the FFT feature extraction method in all 

types with different randomness and shows similar error rates in the rest of the extraction methods. It suggests 

that both randomness and feature extraction methods are irrelevant to the classification results except for FFT. 

3.6 RMSE of Case 1 combination using LSTM

We calculated RMSEs, which represent the error 

gap between the observed data and forecasted data 

of EEG+BS or EEG+PS using the LSTM model. Thus, 

the smaller the value of the RMSEs, the higher the 

predictive error rates. Figs. 9 and 10 depict the 

RMSEs in EEG+BS and EEG+PS of AMIGOS and 

DEAP, respectively. The blue dotted lines are the 

actual obtained data, and the orange solid lines are 

the data predicted by the LSTM model. In AMIGOS, 

the RMSEs of EEG+BS and EEG+PS were 1.296 and 

1.210, respectively. This suggests that the EEG+BS 

has higher error rates (poorer classification 

performance) than the arbitrarily generated 

EEG+PS. This was met by the AUC value (greater 

than 0.5) as a reliable model. In DEAP, Fig. 10 

depicts an RMSE of 785.902 and an RMSE of 

EEG+PS of 0.668, but the AUC value of EEG+BS 

does not meet the reliability criterion. Therefore, 

the RMSEs of the DEAP cannot be compared. 

In contrast to the superiority of EEG+BS with 

lower error rates in existing studies [53], we 

obtained the opposite results, which arbitrarily 

generated PS combining EEG indicating lower error 

rates. We should be careful not to unconditionally 

combine EEG with BS related to emotional state 

prediction to improve predictive performances.

3.7 RMSE for LSTM between EEG+BS and EEG 

Only based on the Case 2 combination

We investigated RMSEs based on Case 2 

combination using LSTM to compare EEG+BS+PS 

and EEG only+PS. Fig. 11. depicts the RMSEs as a 

function of the added PS channels using LSTM for 

(a) AMIGOS and (b) DEAP. For EEG only+PS, the 

RMSEs exhibited a decreasing and then fluctuating 
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Fig. 8. Grand averaged error rates for a binary classification (task vs. rest states) from ICA, PSD, and FFT 

feature extraction methods using SVM in (a) AMIGOS and (b) DEAP. We obtained the inflection points for both 

datasets. For EEG+BS, as the number of PS channels increases, the error rates are initially decreased and then 

increased. For EEG Only, the error rates are steadily decreased for AMOGOS, and steadily increased for DEAP. 

More obvious inflection point tends to appear in EEG+BS than EEG. 

tendency for the AMIGOS dataset, and an 

increasing tendency for the DEAP dataset with an 

increase in the number of PS channels. For 

EEG+BS+PS, the RMSEs initially decreased by the 

deep double descent phenomenon and then 

increased by the curse of dimensionality for both 

datasets with an increasing number of PS channels. 

For EEG+BS+PS, the inflection points were captured 

for both datasets. The red dotted lines represent an 

inflection line of EEG+BS+PS, which first shows a 

decreasing and thereafter an increasing error rate 

pattern. The inflection points occurred at 

approximately 16 added PS channels. The results of 

LSTM were similar to those of SVM. This improved 

the classification performance (low RMSEs) by 

adding an appropriate number of dummy data to 

the original data.

V. Discussion

We compared the classifier error rates using 

SVM and RMSE using LSTM for the emotional state 

classification/prediction from EEG signals by 

adding BSs related to physiological states such as 

ECG, GSR, EOG, EMGs, GSR, respiration, 

plethysmograph, and temperature. We generally 

expect to obtain improved results from EEG signals 

by adding simultaneously measured BSs (i.e., from 

EEG+BS). However, better classification 

performance was obtained by adding randomly 

generated PSs rather than measured BSs. Our 

results demonstrate that although EEG signals help 

in detecting emotional states, the addition of 

various BSs to EEG signals is not necessary to 

further improve classification performance. We 

obtained various results depending on the PS 

channels as well as the data characteristics, 

feature extractions, and classification methods. 
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Fig. 9. RMSEs using LSTM for predicting the AMIGOS 

dataset: (a) EEG+BS and (b) EEG+PS. The RMSEs for 

EEG+BS and EEG+PS correspond to 1.296 and 1.210, 

respectively. EEG+BS shows higher RMSE than EEG+PS. 

It suggests that EEG+BS has lower performances (high 

predictive error rates) than EEG+PS. 

Therefore, unconditionally combined EEG signals 

with BSs should not always improve classification 

and prediction performance. We observed higher 

classification performance (lower error rates) of 

EEG only or EEG+PS when compared to EEG+BS, 

and the classification performance of EEG+BS was 

also improved by adding an appropriate number of 

dummy PS signals.

4.1 Effects of combining EEG signals with BS

According to the Jamesian theory [54], emotions 

are only the perception of bodily changes. This 

emphasizes the important role of a living body 

response in the study of emotions. With the 

Fig. 10. RMSEs using LSTM for predicting the DEAP dataset: 

(a) EEG+BS and (b) EEG+PS. RMSEs correspond to 785.902 

and 0.668 in EEG+BS and EEG+PS, respectively. Thus, 

EEG+BS shows higher RMSE than EEG+PS. However, the 

LSTM classification results are unreliable because the AUC 

value which is less than 0.5 in EEG+BS and the RMSE in DEAP 

cannot be compared. 

importance of these physiological responses, BS 

combined with EEG can help to detect changes in 

emotional states in humans [55-57]. However, our 

work focused on whether the combination of EEG 

and BS achieves some beneficial effects while 

calculating classification or prediction 

performances for two classes, rather than detecting 

the emotional change due to BS combined with 

EEG. Our results demonstrate that the error rates 

for EEG+BS in the binary classification between 

experimental tasks and rest are higher than those 

in the case of EEG+PS or EEG only. This implies 

that EEG signals provide better detection of 
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Fig. 11. RMSEs as a function of the number of added 

PS channels using LSTM: (a) AMIGOS and (b) DEAP. For 

EEG+BS, the inflection patterns appear in both datasets. 

The RMSEs are initially decreased and then increased. 

For EEG Only, RMSEs are decreased and then fluctuated 

for AMIGOS, and steadily increased for DEAP.

emotional states when compared to other 

physiological signals. G. Chanel et al. obtained the 

same results [58]. We also speculate that the 

combination of EEG with high time resolution and 

BS, such as GSR or skin temperature, which has a 

relatively slow biological response, results in a high 

error rate [59]. In other words, as one of the 

characteristic factors that can be used to 

distinguish the data, the time resolution varies 

among BSs, resulting in poor classification 

performance (high error rates). Therefore, 

consistent with existing studies, these differences in 

data-to-data features allow for instantaneous 

emotional detection, but it is unknown whether 

they will influence performance improvement in the 

computational classification process. Indeed, we 

have demonstrated that EEG+BS has a lower error 

rate than EEG only or EEG+PS as depicted in Fig. 2. 

Ultimately, our results indicate that BSs combined 

with EEG do not always have positive effects on the 

classification or prediction of emotion recognition.

4.2 Effects of EEG Only and EEG+BS combined 

with numerous PS channels

With an increase in the number of PS channels, 

the error rates for EEG only show a decreasing 

tendency for the AMIGOS dataset and an increasing 

tendency for the DEAP dataset using SVM, as 

depicted in Fig. 8. However, in terms of showing 

the V-pattern, as depicted in Fig. 11(a), EEG only 

does not always show linear increasing or 

decreasing patterns. As more PSs were added, EEG 

only is also likely to show V-patterns, and it is 

simply not visible owing to the classifier type or 

data characteristics. On the other hand, the error 

rates for EEG+BS initially decreased and thereafter 

increased for both datasets as the number of PS 

channels increased. Therefore, EEG+BS shows 

V-shapes in the error rates with an increase in the 

number of PSs. By adding an appropriate number 

of dummy PS channels, we obtained a rather 

high-performance classification result. The effect 

of the performance improvement due to the 

addition of PS is the same as that of the deep 

double descent phenomenon that was demonstrated 

in a previous study [60]. Although the cause of this 

phenomenon is still unknown, classification 

performance results can change depending on the 

optimal model size, the number of training 

sessions, and the amount of data. In this study, 

unlike that of EEG only, the deep double descent 

phenomenon in the case of EEG+BS is clearly 

observed for up to 15–16 added PS channels, 

showing a low error rate. The addition of more PS 

channels beyond their appropriate number 

degrades the classification performance. The more 
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the combined PS channels are, the higher the error 

rates of EEG+BS are observed, because the 

combined BS data presumably include a lot of 

unnecessary information or fail to find optimized 

hyperparameters that can have lower error rates in 

the machine learning process. This is the same 

phenomenon, such as the theory called the curse 

of dimensionality [61, 62], which interprets that the 

existence of a large amount of data does not 

always maintain lower error rates. In other words, 

as the amount of data increases, the error rates 

increase because of the addition of unnecessary 

(colinear, redundant, or noisy) data or sparsity. 

The results of the SVM depicted in Fig. 8 indicate a 

similar trend for some of the LSTM, as depicted in 

Fig. 11. Thus, we can suggest that the classification 

performance (error rates) of EEG+BS can be 

improved by simply adding arbitrarily generated PS 

data up to an inflection point. 

4.3 Effects of classification error rates of 

EEG+PS and EEG+BS+PS with PS randomness

A recent study showed that mild noise can affect 

classification performance depending on the 

measure (high to low) of randomness [34]. However, 

we demonstrated that the classification results were 

not influenced by randomness as depicted in both 

Fig. 6 and Fig. 7. 

We compared the error rates using SVM based 

on the three random number generators (i.e., 

dsfmt19937; high randomness, mcg16807; low 

randomness, mlfg633164; medium randomness) 

with different randomness. We did not find any 

differences in the error rates owing to the 

randomness between them. However, the error 

rates were affected by the feature extraction 

method regardless of the randomness. The error 

rates were larger in the order of PCA, ICA, PSD, 

and FFT as depicted in Fig. 6. Fig. 7(a) and Fig. 7(c) 

also depict the same pattern as that depicted in 

Fig. 6, but Fig. 7(b) illustrates that the methods 

except for FFT have similar error rates. This is the 

same interpretation as our results. It has been 

reported that error rates are affected by data 

feature extraction methods [63, 64]. Therefore, we 

could not find any differences in the error rates 

due to the randomness. 

4.4 Correlation affecting the error rates of 

classification

We expected that the correlations between EEG 

signals and BSs may affect classification 

performance. In Figs. 4 and 5, the error rates of 

the PS and EEG combinations were lower than 

those of the BS and EEG combinations. This may be 

due to some correlations between EEG and PS, and 

no correlations between EEG and BS. We yielded a 

low error rate, especially when there was a 

correlation or high correlation between EEGs or 

between EEG and PSs. This is probably due to the 

large difference between the features extracted 

from each state in the two mental states for 

classification. Our results are noteworthy in that 

BSs, which are not correlated with EEG, can 

potentially increase the error rates; on the other 

hand, PS, which is linearly correlated with EEG, 

can potentially decrease the error rates. We 

interpret that the correlation between physiological 

signals can regulate the classification performance 

of mental states for emotion recognition.

VI. Conclusions

This study demonstrated that EEG signals 

combined with BS signals, measured simultaneously 

and related to physiological responses did not 

always improve classification performances. We 

summarize this on two grounds.

First, we found the highest error rate of EEG+BS 

in both AMIGOS and DEAP datasets using SVM and 

LSTM models among EEG, EEG+BS, and EEG+PS. 

Hence, the error rate obtained by combining EEG 

and BS does not always guarantee a low error rate.

Second, we show that if PS signals are added 

properly, we can improve the error rate of EEG+BS 
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depending on the type of classifier. In this process, 

the error rate of EEG+BS shows a V-pattern, 

accompanied by a deep double descent and a curse 

of dimensionality.

Therefore, the error rates obtained by combining 

BS with EEG do not promise to have low error 

rates. We believe that our work will provide a new 

paradigm for future emotion recognition research.
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