• 제목/요약/키워드: Memory machine

검색결과 491건 처리시간 0.033초

Development of Surface Weather Forecast Model by using LSTM Machine Learning Method (기계학습의 LSTM을 적용한 지상 기상변수 예측모델 개발)

  • Hong, Sungjae;Kim, Jae Hwan;Choi, Dae Sung;Baek, Kanghyun
    • Atmosphere
    • /
    • 제31권1호
    • /
    • pp.73-83
    • /
    • 2021
  • Numerical weather prediction (NWP) models play an essential role in predicting weather factors, but using them is challenging due to various factors. To overcome the difficulties of NWP models, deep learning models have been deployed in weather forecasting by several recent studies. This study adapts long short-term memory (LSTM), which demonstrates remarkable performance in time-series prediction. The combination of LSTM model input of meteorological features and activation functions have a significant impact on the performance therefore, the results from 5 combinations of input features and 4 activation functions are analyzed in 9 Automated Surface Observing System (ASOS) stations corresponding to cities/islands/mountains. The optimized LSTM model produces better performance within eight forecast hours than Local Data Assimilation and Prediction System (LDAPS) operated by Korean meteorological administration. Therefore, this study illustrates that this LSTM model can be usefully applied to very short-term weather forecasting, and further studies about CNN-LSTM model with 2-D spatial convolution neural network (CNN) coupled in LSTM are required for improvement.

A Robust Energy Consumption Forecasting Model using ResNet-LSTM with Huber Loss

  • Albelwi, Saleh
    • International Journal of Computer Science & Network Security
    • /
    • 제22권7호
    • /
    • pp.301-307
    • /
    • 2022
  • Energy consumption has grown alongside dramatic population increases. Statistics show that buildings in particular utilize a significant amount of energy, worldwide. Because of this, building energy prediction is crucial to best optimize utilities' energy plans and also create a predictive model for consumers. To improve energy prediction performance, this paper proposes a ResNet-LSTM model that combines residual networks (ResNets) and long short-term memory (LSTM) for energy consumption prediction. ResNets are utilized to extract complex and rich features, while LSTM has the ability to learn temporal correlation; the dense layer is used as a regression to forecast energy consumption. To make our model more robust, we employed Huber loss during the optimization process. Huber loss obtains high efficiency by handling minor errors quadratically. It also takes the absolute error for large errors to increase robustness. This makes our model less sensitive to outlier data. Our proposed system was trained on historical data to forecast energy consumption for different time series. To evaluate our proposed model, we compared our model's performance with several popular machine learning and deep learning methods such as linear regression, neural networks, decision tree, and convolutional neural networks, etc. The results show that our proposed model predicted energy consumption most accurately.

Application of Deep Learning: A Review for Firefighting

  • Shaikh, Muhammad Khalid
    • International Journal of Computer Science & Network Security
    • /
    • 제22권5호
    • /
    • pp.73-78
    • /
    • 2022
  • The aim of this paper is to investigate the prevalence of Deep Learning in the literature on Fire & Rescue Service. It is found that deep learning techniques are only beginning to benefit the firefighters. The popular areas where deep learning techniques are making an impact are situational awareness, decision making, mental stress, injuries, well-being of the firefighter such as his sudden fall, inability to move and breathlessness, path planning by the firefighters while getting to an fire scene, wayfinding, tracking firefighters, firefighter physical fitness, employment, prediction of firefighter intervention, firefighter operations such as object recognition in smoky areas, firefighter efficacy, smart firefighting using edge computing, firefighting in teams, and firefighter clothing and safety. The techniques that were found applied in firefighting were Deep learning, Traditional K-Means clustering with engineered time and frequency domain features, Convolutional autoencoders, Long Short-Term Memory (LSTM), Deep Neural Networks, Simulation, VR, ANN, Deep Q Learning, Deep learning based on conditional generative adversarial networks, Decision Trees, Kalman Filters, Computational models, Partial Least Squares, Logistic Regression, Random Forest, Edge computing, C5 Decision Tree, Restricted Boltzmann Machine, Reinforcement Learning, and Recurrent LSTM. The literature review is centered on Firefighters/firemen not involved in wildland fires. The focus was also not on the fire itself. It must also be noted that several deep learning techniques such as CNN were mostly used in fire behavior, fire imaging and identification as well. Those papers that deal with fire behavior were also not part of this literature review.

Development and application of soil moisture prediction using real-time in-situ observation and machine learning (실시간 현장관측과 기계학습을 이용한 토양수분 예측기술의 개발 및 적용)

  • Hyuna Woo;Yaewon Lee;Minyoung Kim;Seong Jin Noh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.286-286
    • /
    • 2023
  • 물의 전체 순환 구조에서 토양수분이 차지하는 정량적 비중은 상대적으로 작지만, 강우-유출 과정의 비선형에 영향을 미치는 지배적 요인 중 하나이고, 토양 침식과 산사태, 농업생산량, 기후 변화 대응 등 광범위한 주제와 연관되어 있어, 토양수분의 물리과정에 대한 이해 증진과 예측 기술의 지속적인 개선이 필요하다. 본 연구에서는 금오공과대학교 유역 내에서 토양수분과 기상 요소를 실시간 관측하고, 기계학습 기법을 이용하여 토양수분을 단기 예측하는 기술을 개발하고 평가한다. 구체적으로는, 토양 관측 장비인 TEROS를 사용하여 표층 지점의 10cm, 심층 지점의 40cm에서의 토양수분, 토양장력과 토양온도를, 기상 관측 장비인 ATMOS를 사용하여 태양복사, 강수량, 기온, 풍속, 대기압 등 다양한 기상 요소를, 실시간 클라우드 방식으로 1여 년간 수집한 데이터를 활용한다. 또한, 과거 및 실시간 데이터를 기반으로 LSTM(Long-Short Term Memory) 기법을 사용하여 토양수분 예측 모형을 구축하고, 선행 예측 시간에 따른 모의 정확도를 평가한다. 기상 요소의 누적 등 자료 분석 방법이 표층 및 심층 토양수분 예측에 미치는 영향, 그리고 예측 모형 개선 방향에 대해 토의한다. 실시간 현장 관측 자료 및 인공지능 기반 단기 토양수분 예측 모의 기술은 소규모 유역의 수문순환 분석 및 물리기반 모형의 개선 등 다양한 분야에서 활용할 수 있을 것으로 기대된다.

  • PDF

Forecasting River Water Levels in the Bac Hung Hai Irrigation System of Vietnam Using an Artificial Neural Network Model

  • Hung Viet Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.37-37
    • /
    • 2023
  • There is currently a high-accuracy modern forecasting method that uses machine learning algorithms or artificial neural network models to forecast river water levels or flowrate. As a result, this study aims to develop a mathematical model based on artificial neural networks to effectively forecast river water levels upstream of Tranh Culvert in North Vietnam's Bac Hung Hai irrigation system. The mathematical model was thoroughly studied and evaluated by using hydrological data from six gauge stations over a period of twenty-two years between 2000 and 2022. Furthermore, the results of the developed model were also compared to those of the long-short-term memory neural networks model. This study performs four predictions, with a forecast time ranging from 6 to 24 hours and a time step of 6 hours. To validate and test the model's performance, the Nash-Sutcliffe efficiency coefficient (NSE), mean absolute error, and root mean squared error were calculated. During the testing phase, the NSE of the model varies from 0.981 to 0.879, corresponding to forecast cases from one to four time steps ahead. The forecast results from the model are very reasonable, indicating that the model performed excellently. Therefore, the proposed model can be used to forecast water levels in North Vietnam's irrigation system or rivers impacted by tides.

  • PDF

Prediction of water level in sewer pipes using machine learning (기계학습을 활용한 하수관로 수위 예측)

  • Heesung Lim;Hyunuk An;Hyojin Lee;Inhyeok Song
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.93-93
    • /
    • 2023
  • 최근 범지구적인 기후변화로 인해 도시유역의 홍수 발생 빈도가 빈번하게 발생하고 있다. 이로 인해 불투수성이 큰 도시지역의 침수 등의 자연재해 증가로 인명 및 재산피해가 발생하고 있다. 이에 따라 하수도의 제 기능을 수행하고 있다면 문제가 없지만 이상기후로 인한 기록적인 폭우에 의해 침수가 발생하고 있다. 홍수 및 집중호우와 같은 극치사상의 발생빈도가 증가됨에 따라 강우 사상의 변동에 따른 하수관로의 수위를 예측하고 침수에 대해 대처하기 위해 과거 수위에 따른 수위 예측은 중요할 것으로 판단된다. 본 연구에서는 수위 예측 연구에 많이 활용되고 있는 시계열 학습에 탁월한 LSTM 알고리즘을 활용한 하수관로 수위 예측을 진행하였다. 데이터의 학습과 검증을 수행하기 위해 실제 하수관로 수위 데이터를 수집하여 연구를 수행하였으며, 대상자료는 서울특별시 강동구에 위치한 하수관로 수위 자료를 활용하였다. 하수관로 수위 예측에는 딥러닝 알고리즘 RNN-LSTM 알고리즘을 활용하였으며, RNN-LSTM 알고리즘은 하천의 수위 예측에 우수한 성능을 보여준 바 있다. 1분 뒤 하수관로 수위 예측보다 5분, 10분 뒤 또는 1시간 3시간 등 다양한 분석을 실시하였다. 데이터 분석을 위해 하수관로 수위값 변동이 심한 1주일을 선정하여 분석을 실시하였다. 연구에는 Google에서 개발한 딥러닝 오픈소스 라이브러리인 텐서플로우를 활용하였으며, 하수관로 수위 고유번호 25-0001을 대상으로 예측을 하였다. 학습에는 2012년 ~ 2018년의 하수관로 수위 자료를 활용하였으며, 모형의 검증을 위해 결정계수(R square)를 이용하여 통계분석을 실시하였다.

  • PDF

Analysis of AI-based techniques for predicting water level according to rainfall (강우에 따른 수위 예측을 위한 AI 기반 기법 분석)

  • Kim, Jin Hyuck;Kim, Chung-Soo;Kim, Cho-Rong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.294-294
    • /
    • 2021
  • 강우에 따른 수위예측은 수자원 관리 및 재해 예방에 있어 중요하다. 기존의 수문분석은 해당지역의 지형 데이터, 매개변수 최적화 등 수위예측 분석에 있어 어려움을 동반한다. 최근 AI(Artificial Intelligence) 기술의 발전에 따라, 수자원 분야에 AI 기술을 활용하는 연구가 수행되고 있다. 본 연구에서는 데이터 간의 관계를 포착할 수 있는 AI 기반의 기법을 이용하여 강우에 따른 수위예측을 실시하였다. 연구대상 유역으로는 과거 수문데이터가 풍부한 설마천 유역으로 선정하였다. AI 기법으로는 머신러닝 중 SVM (Support Vector Machine)과 Gradient boosting 기법을 이용하였으며, 딥러닝으로는 시계열 분석에 사용되는 RNN (Recurrent Neural Network) 중 LSTM (Long Short-Term Memory) 네트워크을 이용하여 수위 예측 분석을 수행하였다. 성능지표로는 수문분석에 주로 사용되는 상관계수와 NSE (Nash-Sutcliffe Efficiency)를 이용하였다. 분석결과 세 기법 모두 강우에 따른 수위예측을 우수하게 수행하였다. 이 중, LSTM 네트워크는 과거데이터를 이용한 보정기간이 늘어날수록 더욱 높은 성능을 보여주었다. 우리나라의 집중호우와 같은 긴급 재난이 우려되는 상황 시 수위예측은 빠른 판단을 요구한다. 비교적 간편한 데이터를 이용하여 수위예측이 가능한 AI 기반 기법을 적용할 시 위의 요구사항을 충족할 것이라 사료된다.

  • PDF

Predicting Oxynitrification layer using AI-based Varying Coefficient Regression model (AI 기반의 Varying Coefficient Regression 모델을 이용한 산질화층 예측)

  • Hye Jung Park;Joo Yong Shim;Kyong Jun An;Chang Ha Hwang;Je Hyun Han
    • Journal of the Korean Society for Heat Treatment
    • /
    • 제36권6호
    • /
    • pp.374-381
    • /
    • 2023
  • This study develops and evaluates a deep learning model for predicting oxide and nitride layers based on plasma process data. We introduce a novel deep learning-based Varying Coefficient Regressor (VCR) by adapting the VCR, which previously relied on an existing unique function. This model is employed to forecast the oxide and nitride layers within the plasma. Through comparative experiments, the proposed VCR-based model exhibits superior performance compared to Long Short-Term Memory, Random Forest, and other methods, showcasing its excellence in predicting time series data. This study indicates the potential for advancing prediction models through deep learning in the domain of plasma processing and highlights its application prospects in industrial settings.

Developing an Artificial Intelligence Algorithm to Predict the Timing of Dialysis Vascular Surgery (투석혈관 수술시기 예측을 위한 인공지능 알고리즘 개발)

  • Kim Dohyoung;Kim Hyunsuk;Lee Sunpyo;Oh Injong;Park Seungbum
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • 제19권4호
    • /
    • pp.97-115
    • /
    • 2023
  • In South Korea, chronic kidney disease(CKD) impacts around 4.6 million adults, leading to a high reliance on hemodialysis. For effective dialysis, vascular access is crucial, with decisions about vascular surgeries often made during dialysis sessions. Anticipating these needs could improve dialysis quality and patient comfort. This study investigates the use of Artificial Intelligence(AI) to predict the timing of surgeries for dialysis vessels, an area not extensively researched. We've developed an AI algorithm using predictive maintenance methods, transitioning from machine learning to a more advanced deep learning approach with Long Short-Term Memory(LSTM) models. The algorithm processes variables such as venous pressure, blood flow, and patient age, demonstrating high effectiveness with metrics exceeding 0.91. By shortening the data collection intervals, a more refined model can be obtained. Implementing this AI in clinical practice could notably enhance patient experience and the quality of medical services in dialysis, marking a significant advancement in the treatment of CKD.

Genetic Algorithm based hyperparameter tuned CNN for identifying IoT intrusions

  • Alexander. R;Pradeep Mohan Kumar. K
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권3호
    • /
    • pp.755-778
    • /
    • 2024
  • In recent years, the number of devices being connected to the internet has grown enormously, as has the intrusive behavior in the network. Thus, it is important for intrusion detection systems to report all intrusive behavior. Using deep learning and machine learning algorithms, intrusion detection systems are able to perform well in identifying attacks. However, the concern with these deep learning algorithms is their inability to identify a suitable network based on traffic volume, which requires manual changing of hyperparameters, which consumes a lot of time and effort. So, to address this, this paper offers a solution using the extended compact genetic algorithm for the automatic tuning of the hyperparameters. The novelty in this work comes in the form of modeling the problem of identifying attacks as a multi-objective optimization problem and the usage of linkage learning for solving the optimization problem. The solution is obtained using the feature map-based Convolutional Neural Network that gets encoded into genes, and using the extended compact genetic algorithm the model is optimized for the detection accuracy and latency. The CIC-IDS-2017 and 2018 datasets are used to verify the hypothesis, and the most recent analysis yielded a substantial F1 score of 99.23%. Response time, CPU, and memory consumption evaluations are done to demonstrate the suitability of this model in a fog environment.