• 제목/요약/키워드: Memory Impairment

검색결과 430건 처리시간 0.032초

Mongolian gerbil의 뇌허혈에 대한 현삼의 신경보호효과 (Neuroprotective Effects of Scrophulariae Radix on Cerebral Ischemia in Mongolian Gerbils)

  • 이준환;송미연;이종수;김성수;신현대;정석희
    • 한방재활의학과학회지
    • /
    • 제18권4호
    • /
    • pp.1-11
    • /
    • 2008
  • 목적 : 뇌허혈은 일시적 혹은, 영구적 뇌동맥 폐색에 의한 뇌혈류의 감소로 유발되며, 허혈 부위에서는 복잡한 병태 생리적 과정을 통하여 신경 세포사가 초래되어 비가역적인 신경학적 손상을 일으킨다. 본 연구에서는 모래쥐를 대상으로 일시적인 전뇌허혈을 유발 시킨 후 해마 치상회에서 허혈로 인한 세포사멸을 관찰하고, 현삼(玄蔘)의 투여가 허혈로 유발된 해마 치상회에서 세포사멸에 미치는 영향과 단기 기억에 미치는 효과를 규명하고자 실험하였다. 연구방법 : 세포사멸은 DNA 분절을 나타내는 terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) 염색법과 단백분해 과정의 마지막 단계에 발현되는 caspase-3에 대한 면역조직화학법을 이용하였고, 단기기억은 step-down avoidance task를 실시하여 평가하였다. 결과 : 본 실험의 결과 일시적인 전뇌허혈은 해마 치상회의 세포사멸을 유의하게 증가시켰으며 단기기억을 감소시켰다. 현삼의 투여는 허혈로 증가된 해마 치상회의 세포사멸을 유의하게 억제하였고, 허혈로 인한 단기 기억의 감소를 유의하게 억제시켰다. 결론 : 본 실험을 통하여 현삼은 뇌허혈로 증가된 세포사멸을 억제하고 단기 기억을 향상시킴을 알 수 있었고, 따라서 현삼은 뇌허혈로 인한 뇌손상을 보호할 수 있는 효과가 있음을 제시하는 바이다.

천연식물자원으로부터 Acetylcholine esterase 저해 활성 탐색 및 인지기능에 미치는 영향 (Screeening of Natural Plant Resources with Acetylcholine esterase inhibitory activity and Effect on Scopolamine-induced Memory Impairment)

  • 최장원;원무호;주한승
    • 농업생명과학연구
    • /
    • 제45권6호
    • /
    • pp.213-226
    • /
    • 2011
  • 아세틸콜린 분해효소(acetylcholine esterase, AChE) 억제제는 아세틸콜린 함량을 높여 콜린성 neuron을 활성화함으로써 기억 능력의 개선 및 치매 개선을 가져와 현재 다양한 AChE 억제제들이 개발되어 사용되고 있다. 본 연구에서는 AChE에 대한 억제 활성을 갖는 천연물을 다양한 식물추출물 및 에센스오일로부터 탐색하였으며, 탐색한 추출물의 scopolamine으로 기억손상을 유발한 쥐의 기억력 개선 활성을 치매 치료제로 사용하고 있는 donepizil과 비교 분석하였다. 그 결과 자몽(Citrus paradisi) 유래의 에센스 오일이 AChE 억제 활성이 가장 높아 20 ug/ml의 농도로 처리하였을 때 90% 이상의 효소 억제 활성을 나타내었다. 수동회피 실험 결과, 자몽 유래의 에센스오일(100 mg/kg, p.o.)을 투여한 쥐는 치매 치료제로 사용하고 있는 donepizile (0.5 mg/kg)을 투여한 쥐와 유사한 latency time을 나타내어 인지기능이 개선되었다. 또한, 수중미로 시험 결과, 자몽 유래 에센스오일(100 mg/Kg, p.o.)을 투여한 쥐는 donepizile(0.5 mg/kg)을 투여한 쥐와 유사한 latency time을 나타내어 인지기능이 개선되었다. 이상의 결과로부터 자몽 유래 에센스오일은 매우 효과적으로 기억력을 개선하여 인지기능을 개선해 줄 수 있는 안전하고 효과적인 후보물질이라고 사료된다.

루이소체 치매로 추정되는 이차성 파킨슨증 환자의 Non-Motor Symptom Scale(NMSS)로 평가한 비운동성 증상을 한약과 침의 복합치료로 호전시킨 증례보고 1례 (A Case Report of Non-Motor Symptoms Evaluated Using the Non-Motor Symptom Scale in a Patient with Secondary Parkinsonism Presumed to be Probable Lewy Body Dementia and Improved with Combined Treatment with Herbal Medicine and Acupuncture)

  • 노민영;이지현;한양희;임정태
    • 대한한방내과학회지
    • /
    • 제42권5호
    • /
    • pp.833-845
    • /
    • 2021
  • Parkinson's syndrome is a degenerative brain disease that presents characteristic motor symptoms of tremor, rigidity, and gait disturbance. In addition to these motor symptoms, Parkinson's syndrome also presents non-motor symptoms (NMSs) such as sleep disturbance and cognitive decline. NMSs reduce patient's quality of life and psychosocial functioning and cause economic burden on the patient, so appropriate evaluation and treatment are required. Lewy body dementia is one of the several diseases belonging to Parkinson's syndrome. Its symptoms such as cognitive function, memory impairment, and hallucinations occur with Parkinsonism. Although drug therapy is being used with drug treatment to treat non-motor symptoms, it has limitations such as side effects, which stimulated interest in other complementary treatment methods such as oriental medicine treatment, dance, and yoga. The patient in this case complained of tremor in the right upper extremity, muscle hypertension and pain, and persistent vision, memory, and cognitive decline. The patient was diagnosed with probable Lewy body dementia. The patient was hospitalized for 4 months and received acupuncture and herbal medicines. After treatment, the patient's NMS scale scores decreased from 90 to 63, and the Unified Parkinson's Disease Rating Scale scores (summed I, II, and III) decreased from 17 points to 8 points. The Beck Depression Inventory score decreased from 22 points to 13 points. In addition, the patient's subjective evaluation revealed improvement. In this case, a patient diagnosed with probable Lewy body dementia who did not respond to the standard treatment and did not want to take medications showed improvement in not only motor symptoms but also NMSs after integrative Korean medicine treatment.

노화 및 인지 능력에 따른 인지반응시간 비교 (Comparison of Cognitive Response Time according to Ageing and Cognitive Ability)

  • 김은미;김정완
    • 재활치료과학
    • /
    • 제10권4호
    • /
    • pp.81-94
    • /
    • 2021
  • 목적 : 반응시간은 인지 능력과 노화에 대한 연구에서 중요한 역할을 한다. 본 연구는 컴퓨터 프로그램을 이용한 인지반응시간(Cognitive response time: CRT) 검사를 실시하여 정보처리에 대한 인지 능력의 영향을 확인하는 것을 목적으로 한다. 연구방법 : 대구 및 경북 지역에 거주하고 있는 65~79세의 일반 노인(Normal elderly: NE) 30명과 기억성 경도인지장애(Amnestic mild cognitive impairment: aMCI) 노인 30명을 대상으로 하였다. 결과 분석은 통계 분석 프로그램 R 4.0.2(University of Auckland, Auckland, New Zealand)를 사용하였다. 결과 : CRT 검사의 세 개 하위 영역에서의 총 반응시간은 집단 및 연령에 따라 유의한 차이를 보였고, 오류율은 일부 하위 영역에서 연령 또는 집단에 따라 유의한 차이를 보였다. aMCI 집단의 CRT 검사 수행력은 전반적인 인지 및 기억 검사의 수행력과 유의한 상관성을 갖는 것으로 나타났다. 결론 : 인지반응시간을 측정하는 CRT 검사를 통해 노화 및 인지 능력에 따른 정보처리과정과 처리속도의 변별적 수행을 관찰할 수 있었다. 또한, 이 검사의 수행력이 전반적인 인지 및 기억 검사와 유의한 상관성을 갖고 있음을 확인하였다. 따라서 지역사회 일반 노인의 초기 인지장애를 예측하는 간편 도구로써 CRT 검사가 의미있게 사용될 수 있기를 기대한다.

Mountain-cultivated ginseng protects against cognitive impairments in aged GPx-1 knockout mice via activation of Nrf2/ChAT/ERK signaling pathway

  • Bao Trong Nguyen;Eun-Joo Shin;Ji Hoon Jeong;Naveen Sharma;Ngoc Kim Cuong Tran;Yen Nhi Doan Nguyen;Dae-Joong Kim;Myung Bok Wie;Yi Lee;Jae Kyung Byun;Sung Kwon Ko;Seung-Yeol Nah;Hyoung-Chun Kim
    • Journal of Ginseng Research
    • /
    • 제47권4호
    • /
    • pp.561-571
    • /
    • 2023
  • Background: Escalating evidence shows that ginseng possesses an antiaging potential with cognitive enhancing activity. As mountain cultivated ginseng (MCG) is cultivated without agricultural chemicals, MCG has emerged as a popular herb medicine. However, little is known about the MCG-mediated pharmacological mechanism on brain aging. Methods: As we demonstrated that glutathione peroxidase (GPx) is important for enhancing memory function in the animal model of aging, we investigated the role of MCG as a GPx inducer using GPx-1 (a major type of GPx) knockout (KO) mice. We assessed whether MCG modulates redox and cholinergic parameters, and memory function in aged GPx-1 knockout KOmice. Results: Redox burden of aged GPx-1 KO mice was more evident than that of aged wild-type (WT) mice. Alteration of Nrf2 DNA binding activity appeared to be more evident than that of NFκB DNA binding activity in aged GPx-1 KO mice. Alteration in choline acetyltransferase (ChAT) activity was more evident than that in acetylcholine esterase activity. MCG significantly attenuated reductions in Nrf2 system and ChAT level. MCG significantly enhanced the co-localization of Nrf2-immunoreactivity and ChAT-immunoreactivity in the same cell population. Nrf2 inhibitor brusatol significantly counteracted MCG-mediated up-regulation in ChAT level and ChAT inhibition (by k252a) significantly reduced ERK phosphorylation by MCG, suggesting that MCG might require signal cascade of Nrf2/ChAT/ERK to enhance cognition. Conclusion: GPx-1 depletion might be a prerequisite for cognitive impairment in aged animals. MCG-mediated cognition enhancement might be associated with the activations of Nrf2, ChAT, and ERK signaling cascade.

Discovery and validation of PURA as a transcription target of 20(S)-protopanaxadiol: Implications for the treatment of cognitive dysfunction

  • Feiyan Chen;Wenjing Zhang;Shuyi Xu;Hantao Zhang;Lin Chen;Cuihua Chen;Zhu Zhu;Yunan Zhao
    • Journal of Ginseng Research
    • /
    • 제47권5호
    • /
    • pp.662-671
    • /
    • 2023
  • Background: 20(S)-protopanaxadiol (PPD), a ginsenoside metabolite, has prominent benefits for the central nervous system, especially in improving learning and memory. However, its transcriptional targets in brain tissue remain unknown. Methods: In this study, we first used mass spectrometry-based drug affinity responsive target stability (DARTS) to identify the potential proteins of ginsenosides and intersected them with the transcription factor library. Second, the transcription factor PURA was confirmed as a target of PPD by biolayer interferometry (BLI) and molecular docking. Next, the effect of PPD on the transcriptional levels of target genes of PURA in brain tissues was determined by qRT-PCR. Finally, bioinformatics analysis was used to analyze the potential biological features of these target proteins. Results: The results showed three overlapping transcription factors between the proteomics of DARTS and transcription factor library. BLI analysis further showed that PPD had a higher direct interaction with PURA than parent ginsenosides. Subsequently, BLI kinetic analysis, molecular docking, and mutations in key amino acids of PURA indicated that PPD specifically bound to PURA. The results of qRT-PCR showed that PPD could increase the transcription levels of PURA target genes in brain. Finally, bioinformatics analysis showed that these target proteins were involved in learning and memory function. Conclusion: The above-mentioned findings indicate that PURA is a transcription target of PPD in brain, and PPD upregulate the transcription levels of target genes related to cognitive dysfunction by binding PURA, which could provide a chemical and biological basis for the study of treating cognitive impairment by targeting PURA.

양유(洋乳)의 증숙 및 발효 추출물의 인지능 개선 활성 (Cognitive Enhancing Activity of the Steamed and Fermented Extracts of Codonopsis lanceolata Radix)

  • 원진배;윤보라;이지우;엄민례;이현용;박동식;정희철;정재윤;마충제
    • 약학회지
    • /
    • 제57권5호
    • /
    • pp.323-329
    • /
    • 2013
  • This study was designed to determine and compare the cognitive enhancing effect of various Codonopsis lanceolata extracts by steaming, fermentation and high hydrostatic pressure process. We prepared water extract of C. lanceolata, steamed C. lanceolata, steamed and fermented C. lanceolata and C.lanceolata by high hydrostatic pressure process and fermentation. Cognitive enhancing effect of extracts was evaluated in scopolamine-induced memory impairment mice using by passive avoidance test and Morris water maze tests. MTT assay was conducted to investigate neuroprotective effect on glutamate induced cell death in HT22 cells. Steamed and fermented C. lanceolata water extract decreased escape latency in Morris water maze test and increased the latency time of the passive avoidance test compared to other extracts. Furthermore, the steamed and fermented C. lanceolata water extract showed neuroprotective effect. These results suggest that steaming and fermentation process more improve cognitive enhancing effect of C. lanceolata than other process.

An In Vitro and In Vivo Cholinesterase Inhibitory Activity of Pistacia khinjuk and Allium sativum Essential Oils

  • Ghajarbeygi, Peyman;Hajhoseini, Ashraf;Hosseini, Motahare-Sadat;Sharifan, Anoosheh
    • 대한약침학회지
    • /
    • 제22권4호
    • /
    • pp.231-238
    • /
    • 2019
  • Objectives: Alzheimer's disease (AD), an overwhelming neurodegenerative disease, has deleterious effects on the brain that consequently causes memory loss and language impairment. This study was intended to investigate the neuroprotective activity of the two essential oils (EOs) from Iranian Pistacia khinjuk (PK) leaves and Allium sativum (AS) cloves against β-Amyloid 25-35 (Aβ25-35) induced elevation of cholinesterase enzymes in AD. Methods: The EOs of PK (PKEO) and AS (ASEO) were prepared and analyzed in terms of extraction yield, phenolic content, and cholinergic markers in vitro. Moreover, both were administered orally to adult male Wistar rats at concentrations of 1, 2, and 3%. The inhibitory potential of PKEO and ASEO was compared with Donepezil (0.75 mg/kg) against the high activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Results: PKEO reached an inhibition rate of 83.6% and 81.4% against AChE and BChE, respectively. ASEO had lower anti-cholinesterase activity (65.4% and 31.5% for the inhibition AChE and BChE). PKEO was found to have more phenolic content than ASEO. A significantly positive correlation was observed between the total phenolics and anti-cholinesterase potential. In rats, both EOs decreased the enzyme activity in a concentration-dependent manner. As compared with Donepezil, the significant difference in the AChE and BChE inhibition occurred as rats were treated with PKEO 3% (p < 0.05). Conclusion: It could be concluded that PKEO and ASEO are potent inhibitors of AChE and BChE in rats that hold promise to be used for the treatment of AD.

Effects of Rice Bran Extracts Fermented with Lactobacillus plantarum on Neuroprotection and Cognitive Improvement in a Rat Model of Ischemic Brain Injury

  • Hong, Jeong Hwa;Kim, Ji Yeong;Baek, Seung Eun;Ingkasupart, Pajaree;Park, Hwa Jin;Kang, Sung Goo
    • 대한의생명과학회지
    • /
    • 제21권2호
    • /
    • pp.92-102
    • /
    • 2015
  • This work aimed to study whether rice bran extract fermented with Lactobacillus plantarum (LW) promotes functional recovery and reduces cognitive impairment after ischemic brain injury. Ischemic brain injury was induced by middle cerebral artery occlusion (MCAO) in rats. Four groups were studied, namely the (1) sham, (2) vehicle, (3) donepezil, and (4) LW groups. Animals were injected with LW once a day for 7 days after middle cerebral artery occlusion. LW group showed significantly improved neurological function as compared to the vehicle group, as well as enhanced learning and memory in the Morris water maze. The LW group showed the greatest functional recovery. Moreover, the LW group showed an enhanced more survival cells anti-apoptotic effect in the cortex and neural cell densities in the hippocampal DG and CA1. In addition, this group showed enhanced expression of neurotrophic factors, antioxidant genes, and the acetylcholine receptor gene, as well as synaptophysin (SYP), Fox-3 (NeuN), doublecortin (DCX), and choline acetyltransferase (ChAT) proteins. Our findings indicate that LW treatment showed the largest effects in functional recovery and cognitive improvement after ischemic brain injury through stimulation of the acetylcholine receptor, antioxidant genes, neurotrophic factors, and expression of NeuN, SYP, DCX, and ChAT.

Salvia miltiorrhiza Bunge Blocks Ethanol-Induced Synaptic Dysfunction through Regulation of NMDA Receptor-Dependent Synaptic Transmission

  • Park, Hye Jin;Lee, Seungheon;Jung, Ji Wook;Lee, Young Choon;Choi, Seong-Min;Kim, Dong Hyun
    • Biomolecules & Therapeutics
    • /
    • 제24권4호
    • /
    • pp.433-437
    • /
    • 2016
  • Consumption of high doses of ethanol can lead to amnesia, which often manifests as a blackout. These blackouts experienced by ethanol consumers may be a major cause of the social problems associated with excess ethanol consumption. However, there is currently no established treatment for preventing these ethanol-induced blackouts. In this study, we tested the ethanol extract of the roots of Salvia miltiorrhiza (SM) for its ability to mitigate ethanol-induced behavioral and synaptic deficits. To test behavioral deficits, an object recognition test was conducted in mouse. In this test, ethanol (1 g/kg, i.p.) impaired object recognition memory, but SM (200 mg/kg) prevented this impairment. To evaluate synaptic deficits, NMDA receptor-mediated excitatory postsynaptic potential (EPSP) and long-term potentiation (LTP) in the mouse hippocampal slices were tested, as they are known to be vulnerable to ethanol and are associated with ethanol-induced amnesia. SM (10 and $100{\mu}g/ml$) significantly ameliorated ethanol-induced long-term potentiation and NMDA receptor-mediated EPSP deficits in the hippocampal slices. Therefore, these results suggest that SM prevents ethanol-induced amnesia by protecting the hippocampus from NMDA receptor-mediated synaptic transmission and synaptic plasticity deficits induced by ethanol.