• Title/Summary/Keyword: Membrane thickness

Search Result 590, Processing Time 0.039 seconds

Morphological Review on Mitochondria Damage by Irradiation (방사선에 의한 미토콘드리아 손상의 형태학적 고찰)

  • JI, Tae-Jeong
    • Journal of radiological science and technology
    • /
    • v.43 no.1
    • /
    • pp.29-34
    • /
    • 2020
  • Mitochondria was observed much around the nuclear membrane of liver tissue where the energy metabolism process is active. Testis tissue had a large number of undifferentiated cells, and cristae in Inner membrane of Mitochondria was not observed clearly. Morphological damage occurred first in Inner membrane rather than the outer membrane. The kidney tissue was clearly observed in the form of cristae. Radiation-induced damage occurred at the edges of both ends, and the membrane was observed bursting with the thickness of the outer membrane. Small intestine cells were observed in many mitochondria in the tissues around the villus, where bowel movements were active. Morphological damage occurred with the outer and inner membranes getting tangled. Mitochondria sensitivity to radiation was sensitized in testis and small intestine tissues, and kidney, ovary and liver tissues were found to be resistant.

Application of Polymer Brush to Enzyme-Multilayered Porous Hollow-Fiber Membrane

  • Kawakita Hidetaka;Uezu Kazuya;Tsuneda Satoshi;Saito Kyoichi;Tamada Masao;Sugo Takanobu
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.11a
    • /
    • pp.142-145
    • /
    • 2004
  • Anion-exchange porous hollow-fiber membranes with a thickness of about 1.2 mm and a pore size of about $0.30{\mu}m$ were used as a supporting matrix to immobilize cycloisomaltooligosaccharide glucanotransferase (CITase). CITase was immobilized to the membrane via anion-exchange adsorption and by subsequent enzymatic cross-linking with transglutaminase, the amount of which ranged from 3 to 110 mg per g of the membrane. The degree of enzyme multilayer binding was equivalent to 0.3 to 9.8. Dextran, as the substrate, was converted into seven- to nine-glucose-membered cycloisomaltooligosaccharides (CI-7, -8, and -9) at a maxi mum yield of $28\%$ in weight at a space velocity of 10 per hour during the permeation of $2.0(w/w)\%$ dextran solution across the CITase-immobilized porous hollow-fiber membrane.

  • PDF

Dynamic Stability of Liquid in a Spherical Tank Covered with Membrane under Vertical Harmonic Excitation

  • Chiba, Masakatsu;Murase, Ryo;Nambu, Yohsuke;Komatsu, Keiji
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.34-39
    • /
    • 2015
  • Experimental studies were conducted on the liquid sloshing characteristics in a spherical tank covered with a flexible membrane. A spherical acrylic tank with 145.2 mm in radius was used as a test tank, and it was half-filled with water. Silicon membranes with 0.2 mm thickness were used as a test membrane with plane or hemispherical types. The test tank was harmonically excited in a vertical direction by an electro-dynamic exciter. In this case, a parametric instability vibration comes up when the excitation frequency is twice the natural frequency. Parametric instability regions of natural modes were measured for three cases, i.e. liquid surface is free, covered with plane membrane and hemi-spherical membrane.

A Study on the Thickness of Egg Shell and Egg Shell Membrane in Silky Fowl (오골계의 난각과 난각막의 두께에 관한 연구)

  • 하정기
    • Korean Journal of Poultry Science
    • /
    • v.10 no.1
    • /
    • pp.23-29
    • /
    • 1983
  • This study was carried out to investigate the variabilities of the thickness of egg shell and shell membrane of silky fowl egg from April 11, 1983 to May 14, 1983. One hundred and twenty eggs used in this experiment were obtained from a Synanmyun silky fowl farm, Sanchungkun, Gyeongnam province. The results obtained are summarized as follows: 1. Total items investigated for the silky fowl egg; egg weight, egg shell weight, egg shell thickness of sharp end, middle part, and blunt end, egg shell membrane thickness of snarp end, middle part, and blunt end, breaking strength, length of egg(L), width of egg(W), and L/W, were measured as 36.58${\pm}$0.446g, 4.53${\pm}$0.079g, 0.32${\pm}$0.006mm 0.32${\pm}$0.047mm, 0.30${\pm}$0.056mm, 0.050${\pm}$0.001mm, 0.050${\pm}$0.001mm, 0.053${\pm}$0.001mm, 3.06${\pm}$0.101kg, 4.80${\pm}$0.024mm, 3.82${\pm}$0.010cm, and 1.26${\pm}$0.005, respectively. 2. Correlation coefficients among 66 combinations of 12 items were estimated. The correlation coefficients relating to egg weight, egg shell weight, egg shell thickness of sharp end, middle part, and blunt end breaking strength, length of egg (L), width of egg (W), and L/W were largely to be highly significant but those related egg shell membrane thickness of sharp end middle part, and blunt end were not significant, sometimes showing inverse correlation

  • PDF

Selective Permeate Transport Characteristics of Iodine ion at Cell Membrane Model of Thyroid which Irradiated by High Energy X-Ray (고에너지 엑스선을 조사한 갑상선의 세포막모델에서 요오드이온의 선택적 투과성 전달 특성)

  • Ko, In-Ho;Yeo, Jin-Dong
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.229-238
    • /
    • 2021
  • The selective permeate transport characteristics of iodine ion at follicle cell membrane model in thyroid which irradiated by high energy x-ray(linac 6 MV) was investigated. The follicle cell membrane model used in this experiment was a polysulfonated copolymerized membrane of poly(4-vinylpyridine-co-acrylonitrile:VP-AN). The difference of membrane thickness [2 mole AN%(w/w)], fixed carrier concentration[VP-AN%(w/w)], OH- concentration were occurred at difference of I- concentration and quantity of thyroid hormone, respectively. The tensile strength in fixed carrier concentration[VP-AN% (w/w): 0-62 %] of irradiated membrane was found to be decreased about 1.2-1.8 times than non-irradiated membrane. The I- selective permeate initial flux with increase of membrane thickness [2mole AN%(w/w)], fixed carrier concentration[VP-AN%(w/ w)], OH- concentration in irradiated membrane were found to be decreased about 2.1-4.5 times, about 2.2-2.5 times, about 2.1-2.67 times than non-irradiated membrane, respectively. As a result, the quantity of thyroid hormone was decreased at irradiated membrane than non-irradiated membrane. The decrease of thyroid hormone was occurred at hypothyroidism and hyperthyroidism, thyroid cancer, and so on. As the thyroid hormone in cell membrane model were abnormal, cell damages were appeared at cell.

Sound Absorption and Thermal Insulation Characteristics of Membrane Used for Sound Field Control (음장제어용 막재료의 음향 및 단열특성)

  • Jeong, Jeong-Ho;Kim, Jeong-Uk;Jeong, Jae-Gun;Cho, Byung-Wook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.2
    • /
    • pp.103-114
    • /
    • 2012
  • Nowadays membrane material is widely used for large indoor spaces and long spaces such as traditional market. Thermal insulation and sound field control performance is considered as a main properties for design of such buildings. In this paper sound absorption and thermal insulation properties of membrane material was investigated. Firstly, normal incidence sound absorption coefficient of 10 kinds of glass wool textiles showed that sound absorption coefficient was increased in proportion of thickness and surface density of textile. Sound absorption coefficient of 4 kinds of sound absorptive inner membrane with outer membrane was tested in the reverberation chamber. Sound absorption coefficient of mid frequency range was about 0.4 ~ 0.6. Also, sound absorption coefficient was changed by the air space behind the membrane material. Secondly, sound field control performance was investigated using mock-up space. By the installation of sound absorption membrane material, reverberation time was decreased and speech intelligibility was increased. Finally, thermal resistance and room temperature in two kinds of mock-up rooms were tested, simultaneously. Results of thermal properties showed thermal insulation properties ware increased by adding inner membrane material underneath the outer membrane.

Separation of Heavy Metal Ions across Novel Mosaic Membrane (하전모자이크 막을 사용하여 중금속이온의 분리)

  • Song, Myung-Kwan;Lee, Jang-Oo;Yang, Wong-Kang
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2005.11a
    • /
    • pp.96-101
    • /
    • 2005
  • A theory for the material transports through ion exchange membrane has been developed on the basis of nonequilibrium thermodynamics by removing the assumption of solvent flow in the previous paper and applied to a detailed study of the ionic transport properties of new charged mosaic membrane(CMM) system. The CMM having two different fixed charges in the polymer membrane indicated unique selective transport behavior then ion-exchange membrane. The separation behavior of ion transport across the CMM with a parallel array of positive and negative functional charges were investigated. It was well-known the analysis of the volume flux and solute flux based on nonequilibrium thermodynamics. Our suggests preferential salt transport across the charged mosaic membranes. Transport properties of heavy metal ions, $Mg^{2+}$, $Mn^{2+}$and sucrose system across the charged mosaic membrane were estimated. As a result, we were known metal salts transport depended largely on the CMM. The reflection coefficient indicated the negative value that suggested preferential material transport and was independent of charged mosaic membrane thickness.

  • PDF

Analytical solution and experimental study of membrane penetration in triaxial test

  • Ji, Enyue;Zhu, Jungao;Chen, Shengshui;Jin, Wei
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.1027-1044
    • /
    • 2017
  • Membrane penetration is the most important factor influencing the measurement of volume change for triaxial consolidated-drained shear test for coarse-grained soil. The effective pressure p, average particle size $d_{50}$, thickness $t_m$ and elastic modulus $E_m$ of membrane, contact area between membrane and soil $A_m$ as well as the initial void ratio e are the major factors influencing membrane penetration. According to the membrane deformation model given by Kramer and Sivaneswaran, an analytical solution of the membrane penetration considering the initial void ratio is deduced using the energy conservation law. The basic equations from theory of plates and shells and the elastic mechanics are employed during the derivation. To verify the presented solution, isotropic consolidation tests of a coarse-grained soil are performed by using the method of embedding different diameter of iron rods in the triaxial samples, and volume changes due to membrane penetration are obtained. The predictions from presented solution and previous analytical solutions are compared with the test results. It is found that the prediction from presented analytical solution agrees well with the test results.

Organotemplate-free synthesis of ZSM-5 membrane for pervaporation dehydration of isopropanol

  • Li, Jiajia;Li, Liangqing;Yang, Jianhua;Lu, Jinming;Wang, Jinqu
    • Membrane and Water Treatment
    • /
    • v.10 no.5
    • /
    • pp.353-360
    • /
    • 2019
  • ZSM-5 membrane was prepared on tubular macroporous ${\alpha}$-alumina support using a different synthesis route. The effects of organic template agent and Si/Al ratio of the synthesis gel on morphology, structure, and separation performance of the ZSM-5 membrane used for dehydration of isopropanol were investigated. High water perm-selectivity ZSM-5 membrane with a thickness of about $3.0{\mu}m$ and a low Si/Al ratio of 10.1 was successfully prepared from organotemplate-free synthesis gel with a molar composition of $SiO_2$ : $0.050Al_2O_3$ : $0.21Na_2O$ : NaF : $51.6H_2O$ at $175^{\circ}C$ for 24 h. The ZSM-5 membrane exhibited high pervaporation performance with a flux of $3.92kg/(m^2{\cdot}h)$ and corresponding separation factor of higher than 10,000 for dehydration of 90 wt.% isopropanol/water mixture at $75^{\circ}C$.

Study on Performance and Durability of the Proton Exchange Membrane Fuel Cell with Different Micro Porous Layer Penetration Thickness (미세다공층의 침투깊이가 다른 기체확산층이 고분자전해질 연료전지의 성능과 내구성에 미치는 영향에 관한 연구)

  • Cho, Junhyun;Park, Jaeman;Oh, Hwanyeong;Min, Kyoungdoug;Jyoung, Jy-Young;Lee, Eunsook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.81.2-81.2
    • /
    • 2011
  • The gas diffusion layer (GDL) consists of two main parts, the GDL backing layer, called as a substrate and the micro porous layer (MPL) coated on the GDBL. In this process, carbon particles of MPL penetrates to the GDBL consequently forms MPL penetration part. In this study, the micro porous layer (MPL) penetration thickness is determined as a design parameter of the GDL which affect pore size distribution profile through the GDL inducing different mass transfer characteristics. The pore size distribution and water permeability characteristics of the GDL are investigated and the cell performance is evaluated under fully/low humidification conditions. Transient response and voltage instability are also studied. In addition, to determine the effects of MPL penetration on the degradation, the carbon corrosion stress test is conducted. The GDL that have deep MPL penetration thickness shows better performance in high current density region because of enhanced water management, however, loss of penetrated MPL parts is shown after aging and it induces worse water management characteristics.

  • PDF