• Title/Summary/Keyword: Membrane thickness

Search Result 590, Processing Time 0.037 seconds

Analysis of the Sol-Gel Coating Process for the Preparation of Supported TiO2 Composite Membranes ($TiO_2$ 복합 분리막의 제조를 위한 졸-겔 코팅공정 분석)

  • 현상훈;최영민
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.5
    • /
    • pp.403-409
    • /
    • 1992
  • The titania membrane thickness coated on the porous alumina support by the sol-gel method was analyzed using the slipcasting model. The thickness of calcined membrane layers increased linearly from 1.3 to 3.8 ${\mu}{\textrm}{m}$ with the square root of the dipping time (4~40 min). Growth rates of the thickness of wet gels and calcined layers were well described quantitatively by the slipcasting model. Through the regression of experimental data using model equations, the permeability and the pressure drop across wet gels, and the thickness and their growth rate constants of wet gels and calcined layers could be determined. It was also known that the gellation concentration of the TiO2 sol used in this work and the porosity of wet gel layes were 25 mol/ι and 0.53, respectively.

  • PDF

Development of Newly Formulated High-strength Wash Primer for Membrane LNG Carrier (멤브레인형 LNG 운반선용 고강도 워시프라이머 개발)

  • Song, Eun-Ha;Lee, Sung-Kyun;Chung, Mong-Kyu;Baek, Kwang-Ki
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2007.09a
    • /
    • pp.48-56
    • /
    • 2007
  • Wash primer was applied to cargo tank of Membrane-LNG Carrier (M-LNGC) for corrosion resistance and high bond-strength with the mastic. However, a lack of bond-strength verification at high thickness wash primer coating resulted in strict coating thickness control. Therefore wash primer was controlled below DFT(Dry Film Thickness) $30{\mu}m$. In order to develop the wash primer satisfying GTT (GAZ TRANSPORTAION TECHNIGAZ) standard even at high thickness, we evaluated coating properties such as wash primer/mastic bond-strength, corrosion resistance, as well as workability for the newly formulated wash primer materials. The newly formulated wash primer had high bonding-strength to mastic even at high thickness and had proper corrosion resistance and workability suitable to yard condition.

  • PDF

A Study on Oxygen Permeability of Polypropylene Membranes and their Temperature Dependency using Medical Oxygen Sensor (의료용 산소센서를 이용한 폴리프로필렌계 고분자막의 산소투과도 및 그의 온도변화 특성 연구)

  • 김태진;이진하
    • KSBB Journal
    • /
    • v.19 no.1
    • /
    • pp.62-66
    • /
    • 2004
  • The oxygen permeation characteristics of BOPP, OPP and CPP membranes were studied against various thicknesses and temperatures. The experimental results showed that the present method of using electrochemical oxygen sensor was a convenient method for measurement of membrane permeability of oxygen and its activation energy, while the thickness dependency on permeability has an order of BOPP > CPP > OPP. And the activation energy of oxygen permeability showed different values for each membrane ranging from 13.1 kJ/mol to 28.5 kJ/mol, without depending on membrane thickness, presumably due to its depending upon membrane material itself.

Preparation of PEBAX/PVDF Composite Membrane and Separaration of Ethanol/Water Mixtures by Pervaporation (PEBAX/PVDF 복합막 제조 및 투과증발을 통한 에탄올/물 분리 연구)

  • Ye Won Jeong;Haeeun Na;Se Wook Jo;Min Young Shon
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.377-382
    • /
    • 2023
  • In this study, a PEBAX/PVDF composite membrane was fabricated, and its pervaporation performance was tested in an ethanol/water mixture. In addition, we attempted to improve the pervaporation performance of the composite membrane by forming a ZIF-8 layer on the surface of the PVDF substrate. The thickness of selective layer was optimized by comparing the pervaporation performance depending on the PEBAX thickness. A pervaporation test was performed on the Ethanol/Water mixture. As a result, the composite membrane using PVDF substrate with ZIF-8 layer had a flux of 1.98 kg/m2h and separation factor of 3.88, showing higher values of both permeation flux and selectivity than the composite membrane using bare PVDF substrate.

Preparation and Evaluation of Hybrid Porous Membrane for the Application of Alkaline Water Electrolysis (알칼리 수전해 적용을 위한 하이브리드 다공성 격리막 제조 및 특성평가)

  • Han, Seong Min;Im, Kwang Seop;Jeong, Ha Neul;Kim, Do Hyeong;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.443-455
    • /
    • 2021
  • In this study, polyphenylene sulfide (PPS) was used as a support and a separator was manufactured using polysulfone and inorganic additives to manufacture a separator with low membrane resistance for application of an alkali water electrolysis system, and then the effect on the thickness and porosity of the support was analyzed. The PPS felt used as a support was compressed with variables of temperature (100℃, 150℃, 200℃) and pressure (1 ton, 2 tons, 3 tons, 5 tons) to adjust the thickness. A porous separator could be manufactured by preparing a slurry with polysulfone using BaTiO3 and ZrO2 which have high hydrophilicity and excellent alkali resistance as inorganic particles and casting the slurry on a compressed PPS felt. Changes in morphology of the separator according to compression conditions were confirmed through an electron scanning microscope (SEM). After that, the porosity was calculated, and the thickness and porosity tended to decrease as the compression conditions increased. Various characteristics were evaluated to confirm whether it could be used as a separator for water electrolysis. As a result of measuring the mechanical strength, it was confirmed that the tensile strength gradually increased as the compression conditions (temperature and pressure) increased. Finally, it was confirmed that the porous separator manufactured through the alkali resistance test has excellent alkali resistance, and through the IV test, it was confirmed that the membranes compressed at 100℃ and 150℃ had a lower voltage and improved performance than the existing uncompressed membrane.

Synthesis of Graphene Using Thermal Chemical Vapor Deposition and Application as a Grid Membrane for Transmission Electron Microscope Observation (열화학증기증착법을 이용한 그래핀의 합성 및 투과전자현미경 관찰용 그리드 멤브레인으로의 응용)

  • Lee, Byeong-Joo;Jeong, Goo-Hwan
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.130-135
    • /
    • 2012
  • We present a method of graphene synthesis with high thickness uniformity using the thermal chemical vapor deposition (TCVD) technique; we demonstrate its application to a grid supporting membrane using transmission electron microscope (TEM) observation, particularly for nanomaterials that have smaller dimensions than the pitch of commercial grid mesh. Graphene was synthesized on electron-beam-evaporated Ni catalytic thin films. Methane and hydrogen gases were used as carbon feedstock and dilution gas, respectively. The effects of synthesis temperature and flow rate of feedstock on graphene structures have been investigated. The most effective condition for large area growth synthesis and high thickness uniformity was found to be $1000^{\circ}C$ and 5 sccm of methane. Among the various applications of the synthesized graphenes, their use as a supporting membrane of a TEM grid has been demonstrated; such a grid is useful for high resolution TEM imaging of nanoscale materials because it preserves the same focal plane over the whole grid mesh. After the graphene synthesis, we were able successfully to transfer the graphenes from the Ni substrates to the TEM grid without a polymeric mediator, so that we were able to preserve the clean surface of the as-synthesized graphene. Then, a drop of carbon nanotube (CNT) suspension was deposited onto the graphene-covered TEM grid. Finally, we performed high resolution TEM observation and obtained clear image of the carbon nanotubes, which were deposited on the graphene supporting membrane.

Effect of Concentration Polarization on The Pervaporation of Aqueous Chlorinated-Organic Solution (유기염화물 수용액의 투과증발에 미치는 농도분극의 영향)

  • Cho, Min-Suk;Kim, Seung-Jai;Kim, Jin-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.698-703
    • /
    • 1998
  • The pervaporation experiments of aqueous solutions of trichloroethylene (TCE) and chlorobenzene (CB) through the silicone rubber (polydimethylsiloxane, PDMS) membrane were carried out and the effect of concentration polarization on the separation characteristics was investigated. The resistance-in-series model was used to explain the boundary layer resistance. It was clear that the concentration polarization phenomenon had a significant effect on the permeation behavior in the pervaporation separation of the trace organic chlorides from aqueous solutions. With the same membrane thickness, the permeation of TCE, which has a stronger affinity for the PDMS, appeared to be more influenced by the boundary layer resistance than that of CB. The effect of boundary layer resistance was reduced and the membrane resistance became dominant with increasing membrane thickness at a given hydrodynamic condition. The separation factor was increased to approach the intrinsic separation factor of the membrane with its thickness.

  • PDF

Development of a Micro-pressure Sensor with high-resisting Pressure for Military Applications (군수용 고내압을 가지는 마이크로 압력센서의 개발)

  • Shim, Joon-Hwan;Seo, Chang-Taeg;Lee, Jong-Hyun
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1016-1021
    • /
    • 2005
  • A piezoresistive pressure sensor using a silicone rubber membrane has been fabricated on the selectively diffused (100)-oriented n/n+/n silicon substrates by a unique silicon micromachining technique using porous silicon ething. The width, length and thickness of the beam were 120${\mu}m$, 600${\mu}m$ and 7${\mu}m$, respectively and the thickness of the silicone rubber membrane was 40${\mu}m$. By the fusion of silicon beam and silicone rubber membrane, the mechanical strength of the pressure sensor could be highly improved due to smaller shear stress. The effectiveness of the sensor was confirmed through an experiment and FEM simulation in which the pressure sensor was characterized.

  • PDF

A Novel Polymer Membrane for Extraction Applications

  • Wang, Xungai;Xu, Jianying;Paimin, Rohani;Shen, Wei
    • Fibers and Polymers
    • /
    • v.3 no.2
    • /
    • pp.68-73
    • /
    • 2002
  • In this study, a new type of Aliquat 336/PVC membrane has been made for extraction experiments. This new membrane is capable of holding more Aliquat 336 than previously developed extraction membranes, hence overcoming a major problem that has confronted many researchers for a long time. The new membrane has been used try investigate the rate of extraction fur the Cd(II) ion in 2.0 M HCI solution and the effect of membrane thickness on the rate of extraction. The experimental results have shown this new membrane has a promising future in relevant industrial applications. A new method is also used in this study to qualitatively identify the oily substance on the surface of membrane after the extraction experiment was completed. This oily substance has been found to be Aliquat 336.

Thickness Optimization of SiO2/Al2O3 Stacked Layer for High Performance pH Sensor Based on Electrolyte-insulator-semiconductor Structure (SiO2/Al2O3 적층 감지막의 두께 최적화를 통한 고성능 Electrolyte-insulator-semiconductor pH 센서의 제작)

  • Gu, Ja-Gyeong;Jang, Hyun-June;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.1
    • /
    • pp.33-36
    • /
    • 2012
  • In this study, the thickness effects of $Al_2O_3$ layer on the sensing properties of $SiO_2/Al_2O_3$ (OA) stacked membrane were investigated using electrolyte-insulator-semiconductor (EIS) structure for high quality pH sensor. The $Al_2O_3$ layers with a respective thickness of 5 nm, 15 nm, 23 nm, 50 nm, and 100 nm were deposited on the 5-nm-thick $SiO_2$ layers. The electrical characteristics and sensing properties of each OA membranes were investigated using metal-insulator-semiconductor (MIS) and EIS devices, respectively. As a result, the OA stacked membrane with 23-nm-thick $Al_2O_3$ layer shows the excellent characteristics as a sensing membrane of EIS sensor, which can enhance the signal to noise ratio.