• Title/Summary/Keyword: Membrane sensor

Search Result 356, Processing Time 0.064 seconds

Sub-Micro Molar Monitoring of La3+ by a Novel Lanthanum PVC-Based Membrane Sensor Based on 3-Hydroxy-N'-(pyridin-2-ylmethylene)-2-naphthohydrazide

  • Ganjali, Mohammad Reza;Norouzi, Parviz;Yousefian, Nasrin;Faridbod, Farnoush;Adib, Mehdi
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1581-1586
    • /
    • 2006
  • A La (III) ion-selective membrane sensor has been fabricated from poly vinyl chloride (PVC) matrix membrane, containing 3-hydroxy-N'-(pyridin-2-ylmethylene)-2-naphthohydrazide (HPMN) as a neutral carrier, potassium tetrakis (p-chlorophenyl) borate (KTpClPB) as an anionic excluder and ortho-nitrophenyloctyl ether (NPOE) as a plasticizing solvent mediator. The effects of membrane composition and pH as well as the influence of the anionic additive on the response properties were investigated. The sensor with 30% PVC, 62% solvent mediator, 6% ionophore and 2% anionic additive, shows the best potentiometric response characteristics. It displays a Nernstian behavior (19.2 mV per decade) across the range of $1.0{\times}10^{-2}-1.0{\times}10^{-7}$ M. The detection limit of the electrode is $7.0{\times}10^{-8}$ M ($\sim$10 ng/mL) and the response time is 15 s from $1.0{\times}10^{-2}$ up to $1.0{\times}10^{-4} $M and 30 s in the range of $1.0 {\times}10^{-5}-1.0{\times}10^{-7}$ M. The sensor can be used in the pH values of 3.0-9.0 for about seven weeks. The membrane sensor was used as an indicator electrode in the potentiometric titration of lanthanum ions with EDTA. It was successfully applied to the lanthanum determination in some mouth wash preparations.

Fabrication of CO2 Sensor Membrane by Photolithographic Method (사진식각법을 이용한 CO2 센서 감지막의 제조)

  • Park, Lee Soon;Kim, Sang Tae;Koh, Kwang-Nak
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.6-12
    • /
    • 1998
  • A FET(Field Effect Transistor) type dissolved $CO_2$ sensor based on Severinghaus type $CO_2$ sensor was fabricated by the photolithographic process. The sensor consists of Ag/AgCl reference electrode and membranes (hydrogel membrane and $CO_2$ gas permeable membrane) on the pH-ISFET base chip. Ag/AgCl reference electrode was fabricated as follows. Ag layer was thermally evaporated and then its upper surface was chemically chloridized into the AgCl. The hydrogel used as an internal electrolyte solution was fabricated by a photolithographic method using 2-hydroxyethyl methacrylate(HEMA) and acrylamide. $CO_2$ permeable membrane on the top of the hydrogel layer was formed by photolithographic process with UV-oligomer. The FET type $pCO_2$ sensor fabricated by photolithographic method showed good linearity within the concentration range of $10^{-3}{\sim}10^0mole/{\ell}$ of dissolved $CO_2$ in aqueous solution with high sensitivity.

  • PDF

$H_2$ sensor for detecting hydrogen in DI water using Pd membrane (발전기 스테이터의 냉각코일에 pinhole 발생을 검지 할 수 있는 수소센서 개발)

  • Choi, Sie-Young
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.442-445
    • /
    • 1999
  • In this work, to detect of hydrogen in DI water in the generator area of nuclear power plants was fabricated Pd/Pt gate MISFET sensor using Pd membrane. $H_2$ permeation through Pd accounts for external mass transfer, surface adsorption and desorption, transitions to and from the bulk metal, and diffusion within the metal. The identification of pinholes in the generator area of plant is an important safety consideration, as hydrogen build-up gives rise to explosion. For this type of application the sensor needs to be isolated in DI water, accordingly, a Pd membrane was used to separate the DI water. The hydrogen in the DI water was then absorbed on the Pd thin film and diffused into the oil through the thin film. The Pd/Pt gate MISFET sensor, encapsulated by oil, will thereby detect permeated hydrogen.

  • PDF

La(III) Selective Membrane Sensor Based on a New N-N Schiff's Base

  • Ganjali, Mohammad Reza;Matloobi, Parisa;Ghorbani, Maryam;Norouzi, Parviz;Salavati-Niasari, Masoud
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.38-42
    • /
    • 2005
  • Bis(2-methylbenzaldehyde)butane-2,3-dihydrazone(TDSB) was used as new N-N Schiff's base which plays the role of an excellent ion carrier in the construction of a La(III) membrane sensor. The best performance was obtained with a membrane containing, 30% poly(vinyl chloride), 60% benzyl acetate, 6% TDSB and 4% sodium tetraphenyl borate. This sensor reveals a very good selectivity towards La(III) ions over a wide variety of cations, including alkali, alkaline earth, transition and heavy metal ions. The proposed electrode exhibits a Nernstian behavior (with slope of 19.8 mV per decade) over a wide concentration range (1.0 ${\times}$ 10$^{-5}$-1.0 ${\times}$ 10$^{-1}$ M). The detection limit of the sensor is 7.0 ${\times}$ 10$^{-6}$ M. It has a very short response time, in the whole concentration range ($\sim$5 s), and can be used for at least twelve weeks in the pH range of 3.0-9.4. The proposed sensor was successfully applied as an indicator electrode for the potentiometric titration of a La(III) solution, with EDTA. It was also successfully applied in the determination of fluoride ions in three mouth wash preparations.

Disposable Nitrate-Selective Optical Sensor Based on Fluorescent Dye

  • Kim, Gi-Young;Sudduth, Kenneth A.;Grant, Sheila A.;Kitchen, Newell R.
    • Journal of Biosystems Engineering
    • /
    • v.37 no.3
    • /
    • pp.209-213
    • /
    • 2012
  • Purpose: This study was performed to develop a simple, disposable thin-film optical nitrate sensor. Methods: The sensor was fabricated by applying a nitrate-selective polymer membrane on the surface of a thin polyester film. The membrane was composed of polyvinylchloride (PVC), plasticizer, fluorescent dye, and nitrate-selective ionophore. Fluorescence intensity of the sensor increased on contact with a nitrate solution. The fluorescence response of the optical nitrate sensor was measured with a commercial fluorospectrometer. Results: The optical sensor exhibited linear response over four concentration decades. Conclusions: Nitrate ion concentrations in plant nutrient solutions can be determined by direct optical measurements without any conditioning before measurements.

A Study on Oxygen Permeability of Polypropylene Membranes and their Temperature Dependency using Medical Oxygen Sensor (의료용 산소센서를 이용한 폴리프로필렌계 고분자막의 산소투과도 및 그의 온도변화 특성 연구)

  • 김태진;이진하
    • KSBB Journal
    • /
    • v.19 no.1
    • /
    • pp.62-66
    • /
    • 2004
  • The oxygen permeation characteristics of BOPP, OPP and CPP membranes were studied against various thicknesses and temperatures. The experimental results showed that the present method of using electrochemical oxygen sensor was a convenient method for measurement of membrane permeability of oxygen and its activation energy, while the thickness dependency on permeability has an order of BOPP > CPP > OPP. And the activation energy of oxygen permeability showed different values for each membrane ranging from 13.1 kJ/mol to 28.5 kJ/mol, without depending on membrane thickness, presumably due to its depending upon membrane material itself.

Effect of Surfactants on the Electrochemical Performance of Cation-Selective Membrane Electrodes

  • Oh, Hyun-Joon;Cha, Geun-Sig;Nam, Hak-hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2003
  • We examined the effect of polyether-type nonionic surfactants (Brij 35, Triton X-100, Tween 20 and Tween 80) on the potentiometric properties of sodium-, potassium- and calcium-selective membranes which are prepared with widely used ionophores and four kinds of polymer matrices [poly(vinyl chloride) (PVC), polyurethane (PU), PVC/PU blend, and silicone rubber (SR)]. It was found that the PVC-based membranes, which provide the best performance among all other matrix-based membranes in the absence of nonionic surfactants, exhibited larger change in their potentiometric properties when nonionic surfactants are added to the sample solution. On the other hand, the sodium-selective SR-based membrane with calix[4]arene, potassium-selective PVC/PU- or SR-based membrane with valinomycin, and the calcium-selective SR-based membrane with ETH 1001 provide almost identical analytical performance in the presence and absence of Tween 20 or Tween 80 surfactants. The origin of nonionic surfactants effect was also investigated by interpreting the experimental results obtained with various matrices and ionophores. The results suggest that the nonionic surfactant extracted into the membrane phase unselectively form complexes with the primary and interfering ions, resulting in increased background potential and lower binding ability for the ionophore. Such effects should result in deteriorated detection limits, reduced response slopes and lower selectivity for the primary ions.

Lead-selective PVC Membrane Electordes Based on Bis(Crown ether)s

  • 오금철;강은철;정규성;팽기정
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.556-558
    • /
    • 1999
  • Lead-selective PVC membrane electrodes based on newly synthesized bis(crown ether)s containing 18-crown-6 moiety was prepared using standard PVC membrane composition. In order to monitor lead in environmental samples by lead sensor, especially good selectivity over alkali and alkaline earth metals has to be obtained. Thus, responses of the PVC membrane prepared with new bis(crown ether)s and Fluka ionophore V (crown ether) base to various cations include lead, alkali and alkaline earth metal ions were investigated for their use as a lead sensor. The polymeric liquid membrane based on trans-1 8-crown-6 ether exhibits the best overall potentiometric performances as a lead-selective electrode in terms of a wide linear dynamic range (between 10-6 and 10-2 M, Pb2+), excellent detection limit (less than 10-6 M) and good durability within limited error. The preferences of lead over other cations, such as Ag+, Hg2+, Na+, Ca2+ and even K+ in the aforementioned electrode are much better than the Fluka ionophore V system.

Titanium Acetylacetonate as an Excellent Ion-Carrier in Construction of Iodide Sensor

  • Ganjali, Mohammad Reza;Daftari, Azadeh;Mizani, Farhang;Salavati-Niasari, Masoud
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.23-26
    • /
    • 2003
  • Titanium acetylacetonate was used in the construction of a PVC-based membrane electrode. This sensor shows very good selectivity for iodide ion over a wide variety of common inorganic and organic anions. It exhibits Nernstian behavior with a slope of 59.1 mV per decade. The working concentration ranges of the sensor are with a detection limit of $3.0\;{\times}\;10^{-6}\;M$. The response time of the sensor is very fast (<8 s), and can be used for at least twelve weeks in the pH range of 4.0-9.2. The best performance was obtained with a membrane composition of 30% PVC, 65% dibutylphthalate, 3% titanium acetylacetonate and 2% hexadecyltrimethylammonium bromide. The proposed sensor was successfully applied as an indicator electrode for titration of iodide with silver ion.

Si Micromachining for MEMS-lR Sensor Application (결정의존성 식각/기판접합을 이용한 MEMS용 구조물의 제작)

  • 박흥우;주병권;박윤권;박정호;김철주;염상섭;서상의;오명환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.411-414
    • /
    • 1998
  • In this paper, the silicon-nitride membrane structure for IR sensor was fabricated through the etching and the direct bonding. The PT layer as a IR detection layer was deposited on the membrane and its characteristics were measured. The attack of PT layer during the etching of silicon wafer as well as the thermal isolation of the IR detection layer can be solved through the method of bonding/etching of silicon wafer. Because the PT layer of c-axial orientation rained thermal polarization without polling, the more integration capability can be achieved. The surface roughness of the membrane was measured by AFM, the micro voids and the non-contacted area were inspected by IR detector, and the bonding interface was observed by SEM. The polarization characteristics and the dielectric characteristics of the PT layer were measured, too.

  • PDF