• Title/Summary/Keyword: Membrane perturbation

Search Result 26, Processing Time 0.018 seconds

Regulated Expression of Nebulin by Transfection of Green Fluorescent Protein-Tagged Nebulin Fragments in Cultured Chicken Myoblast

  • Park, Su-Jung;Kim, Ji-Hee;Ko, Han-Suk;Kim, Chong-Rak;Kim, Han-Do;Kang, Ho-Sung
    • Biomedical Science Letters
    • /
    • v.7 no.4
    • /
    • pp.167-172
    • /
    • 2001
  • Nebulin is an approximately 700 kDa filamentous protein in vertebrate skeletal muscle. It binds to the Z line and also binds side-by-side to the entire thin actin filament in a sarcomere. The correlation of nebulin size with thin filament length have led to the suggestion that nebulin acts as a molecular ruler for the length of thin filaments. The C-terminal part of human nebulin is anchored in the sarcomeric Z-disk and contains an SH3 domain. SH3 domains have been identified in an ever-increasing number of proteins important for a wide range of cellular processes, from signal transduction to cytoskeleton assembly and membrane localization. However, the exact physiological role of SH3 domains remains, in many cases, unclear. To explore the role of nebulin SH3 in the cytoskeletal rearrangement that accompanies myoblast differentiation, we transfected sense and antisense nebulin SH3 domain fused to enhanced green fluorescent protein in myoblast. Cells expressing nebulin SH3 fragment showed decrease of cell-cell adhesion, and cells transfected with antisense nebulin SH3 gene showed a rounded cell morphology and loss of cell-matrix adhesion. No alteration in cell shape and differentiation were observed in control cells expressing enhanced green fluorescent protein. Perturbation of nebulin altered the cell shape and disrupted cell adhesion in myoblast, demonstrating that nebulin can affect cytoskeleton rearrangement.

  • PDF

Interaction of Apidaecin Ib with Phospholipid Bilayers and its Edwardsiella Species-specific Antimicrobial Activity

  • Seo, Jung-Kil;Go, Hye-Jin;Moon, Ho-Sung;Lee, Min-Jeong;Hong, Yong-Ki;Jeong, Hyun-Do;Nam, Bo-Hye;Park, Tae-Hyun;Park, Nam-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.115-122
    • /
    • 2012
  • Apidaecin Ib had strong antimicrobial activity against several tested Gram-negative bacteria including Escherichia coli, Enterobacter cloacae, and Shigella flexneri (MECs; $0.3-1.5{\mu}g/mL$), but showed no activity against all the tested Gram-positive bacteria including Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus and one yeast, Candida albicans (MECs; > $125{\mu}g/mL$). Interestingly, this peptide showed potent antibacterial activity only against Edwardsiella species (MECs; $0.6-3.6{\mu}g/mL$) among the tested fish pathogenic bacteria through a bacteriostatic process and showed no significant hemolytic activity. Apidaecin Ib took an unordered structure in all environments and also had very weak membrane perturbation activity even at $25{\mu}M$. Anti-Edwardsiella activity of apidaecin Ib is stronger than those of other antimicrobial polypeptides or antibiotics, but its activity is salt-sensitive. These results suggest that apidaecin Ib has Edwardsiella speciesspecific antibacterial activity and could be applied as new preventive or control additives for Edwardsiella species infection in freshwater fish aquaculture.

4-Aminopyridine Inhibits the Large-conductance $Ca^{2+}-activated$ $K^+$ Channel $(BK_{Ca})$ Currents in Rabbit Pulmonary Arterial Smooth Muscle Cells

  • Bae, Young-Min;Kim, Ae-Ran;Kim, Bo-Kyung;Cho, Sung-Il;Kim, Jung-Hwan;Earm, Yung-E
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.1
    • /
    • pp.25-28
    • /
    • 2003
  • Ion channel inhibitors are widely used for pharmacological discrimination between the different channel types as well as for determination of their functional role. In the present study, we tested the hypothesis that 4-aminopyridine (4-AP) could affect the large conductance $Ca^{2+}$-activated $K^+$ channel ($BK_{Ca}$) currents using perforated-patch or cell-attached configuration of patch-clamp technique in the rabbit pulmonary arterial smooth muscle. Application of 4-AP reversibly inhibited the spontaneous transient outward currents (STOCs). The reversal potential and the sensitivity to charybdotoxin indicated that the STOCs were due to the activation of $BK_{Ca}$. The $BK_{Ca}$ currents were recorded in single channel resolution under the cell-attached mode of patch-clamp technique for minimal perturbation of intracellular environment. Application of 4-AP also inhibited the single $BK_{Ca}$ currents reversibly and dose-dependently. The membrane potential of rabbit pulmonary arterial smooth muscle cells showed spontaneous transient hyperpolarizations (STHPs), presumably due to the STOC activities, which was also inhibited by 4-AP. These results suggest that 4-AP can inhibit $BK_{Ca}$ currentsin the intact rabbit vascular smooth muscle. The use of 4-AP as a selective voltage-dependent $K^+$ (KV) channel blocker in vascular smooth muscle, therefore, must be reevaluated.

Antimicrobial Characteristic of Methanolic Extracts from Prunus mune Byproducts Against Food Spoilage Microorganisms (매실박 메탄올 추출물의 항균 특성)

  • Ha, Myung-Hee;Park, Woo-Po;Lee, Seung-Cheol;Heo, Ho-Jin;Cho, Sung-Hwan
    • Food Science and Preservation
    • /
    • v.14 no.2
    • /
    • pp.183-187
    • /
    • 2007
  • The antimicrobial properties of methanolic extract (PML) from Prunus nune byproducts after liquor manufacturing weremeasured using various putrefactive and food spoilage microorganisms. PML showed remarkable antimicrobial effects against various putrefactive and food spoliage microorganisms when used at 500g/mL. The antimicrobial properties were stable for 30 min at 100C and at pH 3 11. PML seems to be a natural antimicrobial agent with high effectiveness, and shows both thernal and pH stability. In addition, the mode of antimicrobial action suggests that the active components may synergistically perturb microbial membrane functions.

Effect of Botanical Antimicrobial Agent-Citrus Products on the Quality Characteristics during Kimchi Fermentation (식물성 천연항균소재를 첨가한 김치의 숙성 중 품질변화)

  • Cho Sung-Hwan;Lee Seung-Gheol;Park Wan-Soo
    • Food Science and Preservation
    • /
    • v.12 no.1
    • /
    • pp.8-16
    • /
    • 2005
  • To develop natural antimicrobial agents for extending the self-life of Kimchi, the effect of botanical antimicrobial agent-citrus products(BAAC) on microorganisms related to Kimchi spoilage was investigated. The inhibitory effect of BAAC on microorganisms related to Kimchi spoilage was increased according to the concentration of BAAC. Antimicrobial activities of BAAC against microoiganisms related to Kimchi spoilage were remarkably high. The effect of BAAC on the cellular membrane function of microorganisms showed the perturbation of cells in the presence of BAAC. Direct isualization of microbial cells by using both transmission md scanning electron microscope showed microbial cell membrane was destroyed by treating with BAAC. It could be confirmed that BAAC completely inhibit the growth of the test strains. The pH of BAAC-added Kimchi was a little higher than that of the control through the fermentation period. Titratable acidify, vitamin C and viable cells in BAAC-added Kimchi were changed more slowly than those in the control. Sensory evaluation did not show any significant difference between $0.01\%$ BAAC-added Kimchi and the control that showed the best palatabilities during fermentation.

Interaction of the Post-transition Metal Ions and New Macrocycles in Solution

  • Jung, Oh-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.6
    • /
    • pp.687-691
    • /
    • 1993
  • Complexation of $Cd^{2+},\;Pb^{2+}\;and\;Hg^{2+}$ ions with four cryptands were studied by potentiometry and solution calorimetry in various weight percent methanol-aqueous solvent at 25${\circ}$C under $CO_2$free nitrogen atmosphere. The stabilities of the complexes were dependent on the cavity size of macrocycles. The $Hg^{2+}$ ion stability constants are higher than those of $Cd^{2+}\;and\;Pb^{2+}$ ion. All the cryptands formed complexes having 1 : 1 (metal to ligand) mole-ratio except for $Hg^{2+}-L_1$ (cryptand 1,2b: 3,5-benzo-9,14,17-trioxa-1,7-diazabicyclo-(8,5,5) heptadecane) and $Cd^{2+}-L_2$ (cryptand 2,2b: 3,5-benzo-10,13,18,21-tetraoxa-1,7-diazabicyclo (8,5,5) eicosane) complexes. $Hg^{2+}-L_1$ complex was a sandwitch type, and the $Cd^{2+}-L_2$ complex showed two stepwise reactions. Thermodynamic parameters of the $Cd^{2+}-L_2$ complex were $6.08(log\;K_1)$, -7.28 Kcal/mol $({\Delta}H_1)$, and $4.78\;(log\;K_2)$, -4.62 Kcal/mol $({\Delta}H_2)$, respectively, for 1 : 1 and 2: 1 mole-ratio. The sequences of the selectivity were increased in the order of $Hg^{2+}\;>Pb^{2+}\;>Cd^{2+}$ ion for $L_3\;and\;L_4$ macrocycles, and the $L_2$-macrocycle has a selectivity for $Cd^{2+}$ ion relative to $Zn^{2+},\;Ni^{2+},\;Pb^{2+}\;and\;Hg^{2+}$ ions. Thus, it is expected that the $L_2$ can be used as carrier for seperation of the post transition metals by macrocycles-mediated liquid membrane because $L_2$ is not soluble in water, and the difference of stability constants of the metal complexes with $L_2$ are large as compared with the other transition metal complexes. The $^1H\;and\;^{13}C-NMR studies indicated that the nitrogen atoms of cryptands have greater affinity to the post transition metal ions than the oxygen atoms, and that the planarities of the macrocycles were lost by complexation with the metal ions because of the perturbation of ring current of benzene molecule attached to macrocycles and counter-anions.