• Title/Summary/Keyword: Membrane Protein

Search Result 1,803, Processing Time 0.029 seconds

Effect of Ginseng Saponins on $K^+-Dependent$ Phosphatase Activity of Dog Cardiac Sarcolemma (인삼 사포닌이 개 심실 형질막의 $K^+$-의존성 포스파타제 활성에 미치는 영향)

  • Lee, Shin-Woong;Lee, Jeung-Soo
    • YAKHAK HOEJI
    • /
    • v.36 no.2
    • /
    • pp.129-136
    • /
    • 1992
  • The effects of ginseng saponins, gypsophila saponin, sodium dodecyl sulfate(SDS), and Triton X-100 on membrane $K^+-dependent$ phosphatase activity which is lipid dependent and represents dephosphorylation step of the complete Na+, $K^+-ATPase$ reaction were investigated in this study to elucidate whether the effects of ginseng saponins are due to the detergent action, using sarcolemma enriched preparation isolated from dog ventricle. $Na^+$, $K^+-ATPase$ and $K^+-dependent$ phosphatase activities of cardiac sarcolemma were about $143\;{\mu}mol$ Pi/mg protein/hr and $34\;{\mu}mol$ p-nitrophenol/mg protein/hr, respectively. While ginseng saponins (triol>total>diol) inhibited $K^+-dependent$ phosphatase activity, gypsophila saponin, and low dose of SDS($0.4\;{\mu}g/{\mu}g$ protein), and Triton X-100 ($0.6\;{\mu}g/{\mu}g$ protein) increased the enzyme activity, indicating disruptive effect of detergents on membrane barriers. The activating effect of low doses of Triton X-100 on membrane $K^+-dependent$ phosphatase appeared at concentration decreasing light scattering. However, the inhibitory effect of ginseng saponin appeared before a decrease in light scattering. These results suggest that low concentrations of ginseng saponins inhibit the membrane $K^+-dependent$ phosphatase by interacting directly with enzyme before membrane disruption.

  • PDF

Low-ε Static Probe Development for 15N-1H Solid-state NMR Study of Membrane Proteins for an 800 MHz NB Magnet

  • Park, Tae-Joon;Choi, Sung-Sub;Jung, Ji-Ho;Park, Yu-Geun;Kim, Yongae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.823-826
    • /
    • 2013
  • A low-${\varepsilon}$ solid-state NMR(Nuclear Magnetic Resonance) probe was developed for the spectroscopic analysis of two-dimensional $^{15}N-^1H$ heteronuclear dipolar coupling in dilute membrane proteins oriented in hydrated and dielectrically lossy lipid environments. The system employed a 800 MHz narrow-bore magnet. A solenoid coil strip shield was used to reduce deleterious RF sample heating by minimizing the conservative electric fields generated by the double-tuned resonator at high magnetic fields. The probe's design, construction, and performance in solid-state NMR experiments at high magnetic fields are described here. Such high-resolution solid-state NMR spectroscopic analysis of static oriented samples in hydrated phospholipid bilayers or bicelles could aid the structural analysis of dilute biological membrane proteins.

Changes in Pectoral Mvoblast Proteins- during Myofibrillogenesis in vitro (배양흉근 근모세포의 근원섬유 형성과정 동안의 근단백질의 양상)

  • 하재청;김한도김병기
    • The Korean Journal of Zoology
    • /
    • v.35 no.3
    • /
    • pp.322-331
    • /
    • 1992
  • To investigate the svnthyesis of muscle proteins during differentiation of chicken myoblast, cvtosolic and membrane fractions were used for both sodium dodecvl sulfate polvcrylamide gel eBectrophoresis and two-dimensional gel electrophoresis. An extensive cell fusion was observed in 4 day culture. In the protein pattern of the cvtosolic fraction from SDS-PAGE. several protein bands including 250 kDa and 46 kDa showed remarkable changes during culture. the protein of 46 kDa was the most prominent one ann its optical density was the highest in 5 day culture (OD = 1.30). In the membrane fraction, band of 19.8 kDa showed the highest absorbance with 0.93 OD at 12 hr after initial plating and decreased gradually thereafter to 0.23 in 5 nay culture. From the results of two-dimensional gel electrophoresis of cytosolic fraction, the 46 kDa spot was observed as ko separated forms from culture 2 nary culture, and the sixte of this spot was the largest in 5 nay culture. In the pattern of membrane protein, the extensive appearance of newiv synthesized Proteins was found in a naut culture, but no Prominent spot was observed throughout culture. From the results of the present clay, we found that, during myoblast differentiation, the most prominent proteins were bands of 46 kDa and 19.8 kDa in cvtosolic and membrane fraction, respectively, and the appearance of new proteins was initiated at 48 hr after initial plating, and the 46 kDa protein was predominant in the cytoplasm of late culture in which extensive cell fusion was observed.

  • PDF

Structural Studies of Membrane Protein by Solid-state NMR Spectroscopy (고체상 핵자기공명 분광법을 이용한 막단백질의 구조연구)

  • Kim, Yongae
    • Analytical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.388-392
    • /
    • 2004
  • Structural studies of membrane proteins, importantly involving interpretation of genomics information, many signaling pathway and major drug target for drug discovery, are having difficulty in characterizing the function using conventional solution nmr spectroscopy and x-ray crystallography because phospholipid bilayers hindered fast tumbling and crystallization. Here, we studied the structure of the pf1 coat protein in oriented phospholipid bilayers by home-built solid-state NMR probe. Bacteriophage pf1 was purified from Paeudomonas Aeruginosa and coat protein of bacteriophage pf1 was isolated from DNA and other proteins.

Construction and Characterization of an Enhanced GFP-Tagged TIM-1 Fusion Protein

  • Qing, Jilin;Xiao, Haibing;Zhao, Lin;Qin, Guifang;Hu, Lihua;Chen, Zhizhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.568-576
    • /
    • 2014
  • TIM-1 (also known as KIM-1 and HAVcr-1) is a type I transmembrane glycoprotein member of the TIM family that may play important roles in innate and adaptive immune responses. The overexpression of proteins associated with membrane proteins is a major obstacle to overcome in studies of membrane protein structures and functions. In this study, we successfully coupled the overexpression of the TIM-1 protein with a C-terminal enhanced green fluorescent protein (GFP) tag in Escherichia coli. To the best of our knowledge, this report is the first to describe the overexpression of human TIM-1 in E. coli. The purified TIM-1-EGFP fusion protein recognized and bound directly to apoptotic cells and did not to bind to viable cells. Furthermore, we confirmed that the interactions of TIM-1-EGFP with apoptotic cells were blocked by TIM-1-Fc fusion proteins. This fusion protein represents a readily obtainable source of biologically active TIM-1 that may prove useful in future studies of human TIM-1.

The Effect of Growth Regulators and Light Quality on the Changes in Protein Pattern of Callus from Intergeneric Protoplast Fusion between Nicotiana tabacum and Solanum nigrum (Nicotiana tabacum과 Solanum nigrum의 속간 원형질체 융합에서 유도된 캘러스의 단백질 양태변화에 미치는 생장조절제 및 광선의 효과)

  • 김영상;이동희
    • Journal of Environmental Science International
    • /
    • v.3 no.2
    • /
    • pp.141-155
    • /
    • 1994
  • The effect of growth regulators (NAA, BA and $ extrm{GA}_3$) and light (blue, red and far-red) on the changes in total protein and thylakoid membrane protein pattern of callus from intergeneric protoplast fusion between Nicotiana tabacum and Solanum nigrw were investigated. When the callus were irradiated with different wavelengths of light, blue and red light accelerated the synthesis of total proteins and thylakoid membrane proteins. Particularly, red light led to an increase in the protein synthesis compared to blue light. When the callus were subjected to various combinations of growth regulators, NAA+$ extrm{GA}_3$ and NAA+BA treatments induced remarkable increase of total proteins and thylakoid membrane proteins accumulation, particularly in the combination of NAA+$ extrm{GA}_3$. NAA.$ extrm{GA}_3$ treatment with irradiation of red ligh showed highest value in the accumulation of total proteins and thylakoid membrane proteins. We conclude that simultaneous application of red light and NAA+$ extrm{GA}_3$ treatment may induce synergistic effect in the synthesis of total proteins and thylakoid membrane Proteins.

  • PDF

Relation of $\Ca^{2+}$-ATPase and trigger peptidase(TPase) that are Membrane Proteins in a Differentiation Process on Heterobasidiomycerous Yeast (이담자 효모균의 성분화과정에서 막단백질 중 $\Ca^{2+}$-ATPase와 trigger peptidase(TPase)의 상호관계)

  • 정영기;이태호;정경태
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 1994
  • We have studied the relation between Ca$^{2+}$-ATPase and trigger peptidase(TPase) which are membeane protein well known as their significant role for signal transduction of mating pheromone in heterobasidiomycetous yeast. Rhodosporidium toruloides. We found out that there were Ca $^{2+}$-ATPase and TPase together in isolated calmodulim binding protein(CBP), usion calmodulin affinity column chromatography after solubilization of mation type a cell membrane protein, and that the dependence of enzyme activity of both the enzymes on Ca$^{2+}$, phospholipid and nonionic detergent are similar. However, Ca$^{2+}$-ATPase hed quite absolute dependence on calmodulin and, on the other hand, TPase didn't have any dependence. Judging from the fact that there are both enzymes in CBP which the dependence of calmodulin are quite different, we found out that both enzymes were made to their compound and existed in mating type a cell membrane.

  • PDF

Studies on the Interaction of Glut4 and Cytoskeletal Protein (Glut4와 Cytoskeletal Protein의 상호작용에 관한 연구)

  • 김미영;이경림
    • Biomolecules & Therapeutics
    • /
    • v.4 no.4
    • /
    • pp.398-401
    • /
    • 1996
  • The glucose transporters found in the plasma membrane of all animal cells are known to have 12 putative transmembrane domains. Among 7 cytoplasmic loops, the fourth loop is the largest one. Since previous studies showed that cofilin, an actin-modulating protein, was found to interact with the largest cytoplasmic loop of (Na, K)ATPase, we tested if cofilin interacts with the largest cytoplasmic loop of Glut4. We demonstrated by the two-hybrid system that the largest cytoplasmic loop of Glut4 did not show any interaction with cofilin, suggesting that cofilin is not required for the membrane targeting process of other membrane proteins but only for a P-type ATPase.

  • PDF

Affinity Filtration Chromatography of Proteins by Chitosan and Chitin Membranes: 1. Preparation and Characterization of Porous Affinity Membranes (키토산 및 키틴 막에 의한 단백질의 친화 여과 크로마토그래피: 1. 다공성 친화 막의 제조와 특성 평가)

  • Youm Kyung-Ho;Yuk Yeong-Jae
    • Membrane Journal
    • /
    • v.16 no.1
    • /
    • pp.39-50
    • /
    • 2006
  • Porous chitosan and chitin membranes were prepared by using silica particles as porogen. Membrane preparation was achieved via the following three steps: (1) chitosan film formation by casting an chitosan solution containing silica particles, (2) preparation of porous chitosan membrane by dissolving the silica particles by immersing the film into an alkaline solution and (3) preparation of porous chitin membrane by acetylation of chitosan membrane with acetic anhydride. The optimum preparation conditions which could provide a chitosan and chitin membranes with good mechanical strength and adequate pure water flux were determined. To allow protein affinity, a reactive dye (Cibacron Blue 3GA) was immobilized on porous chitosan membrane. Binding capacities of affinity chitosan and chitin membranes for protein and enzyme were determined by the batch adsorption experiments of BSA protein and lysozyme enzyme. The maximum binding capacity of affinity chitosan membrane for BSA protein is about 22 mg/mL, and that of affinity chitin membrane for lysozyme enzyme is about 26 mg/mL. Those binding capacities are about $several{\sim}several$ tens times larger than those of chitosan and chitin-based hydrogel beads. Those results suggest that the porous chitosan and chitin membranes are suitable in affinity filtration chromatography for large scale separation of proteins.

Over-expression of Chlamydia psittaci MOMP in Escherichia coli and its purification (대장균에서 Chlamydia psittaci MOMP 유전자의 과발현과 순수분리)

  • Ha, Jung-Soon;Lee, Do-Bu;Han, Sang-Hoon;Lim, Yoon-Kyu;Yoon, Byoung-Su
    • Korean Journal of Veterinary Research
    • /
    • v.46 no.1
    • /
    • pp.13-19
    • /
    • 2006
  • Generally known psittacosis or ornithosis is a disease of birds caused by the bacterium Chlamydia psittaci. Humans are accidential hosts and are most commonly infected from avian sources. It raises hepatitis or neurosis. As major outer membrane protein (MOMP) of Chlamydia psittaci has been known to play a role in the avoidance of host immune defenses, research on developing a Chlamydia vaccine has focused on the MOMP. In this study, the gene encoding the major outer membrane protein (MOMP) of the Chlamydia psittaci strain 6BC was cloned and expressed in Escherichia coli strain M-15. The recombinant DNA was cloned by fusion prokaryotic expression vector pQE30-GFPII. Expression of the recombinant protein was performed in E. coli and was induced by IPTG. The size of expressed recombinant protein is 74.220 kDa (MOMP, 43.260 kDa; GFP expression region, 30 kDa; $6{\times}His$ tag, 960Da). This protein was purified by using his-tagging-inclusion body. Recombinant protein was reconfirmed through ELISA test and western blot with antibody against pQE30-GFPII. It will be useful antibody development.