• Title/Summary/Keyword: Membrane Permeability

Search Result 933, Processing Time 0.029 seconds

Bolld Compatibility of Cellulose Membrane with Phosphonolipid Polar Groups

  • Lee, M.K.;Kim, M.S.;Jung, S.K.;Park, S.M.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.10a
    • /
    • pp.14-16
    • /
    • 1994
  • Requirements for the hemodialysis membrane are excellent permeability for water and solute, mechanical strength and blood compatibility. Many synthetic polymer membranes have been invertigated to raise the efficiency of dialysis, however, 85% of the worldwide hemodialysis still uses cellulose membrane. Though the cellulose membrane has both good permeability and mechenical properties, its blood compatibility needs to be improved for hemodialysis. In this paper, 2-(methacryloyloxy)ethyl-2-(trimethyl ammonium) ethyl phosphate(MTP) and Glycidylmethacrylate(GMA) were grafted on the cellulose membranes to make blood compa- tible membranes.

  • PDF

On the Mass Transfer Behaviors in Hollcw-Fiber Membrane Modules for $CO_2$ Separation (이산화탄소 분리를 위한 중공사막 모듈에서의 물질전달 거동)

  • 전명석;김영목;이규호
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.04a
    • /
    • pp.51-52
    • /
    • 1994
  • High permeability, selectivity and stability are the basic properties also required for membrane gas separations. The $CO_2$ separation by liquid membranes has been developed as a new technique to improve the permeability and selectivity of polymeric membranes. Sirkar et al.(1) have atlempted the hollow-fiber contained liquid membrane technique under four different operational modes, and permeation models have been proposed for all modes. Compared to a conventional liquid membrane, the diffusional resistance decreased by the work of Teramoto et al.(2), who referred to a moving liquid membrane. Recently, Shelekhin and Beckman (3) considered the possibility of combining absorption and membrane separation processes in one integrated system called a membrane absorber. Their analysis could be predicted effectively the performance of flat sheet membrane, however, there are restrictions for considering a flow effect. The gas absorption rate is determined by both an interfacial area and a mass transfer coefficient. It can be easily understood that although the mass transfer coefficients in hollow fiber modules are smaller than in conventional contactors, the substantial increase of the interfacial area can result in a more efficient absorber (4). In order to predict a performance in the general system of hollow-fiber membrane absorber, a gas-liquid mass transfor should be investigated inevitably. The influence of liquid velocity on both a mass transfer and a performance will be described, and then compared with experimental results. A present study is attempted to provide the fundamentals for understanding aspects of promising a hollow-fiber membrane absorber.

  • PDF

Evaluation of Forward Osmosis (FO) Membrane Performances in a Non-Pressurized Membrane System (비가압식 막 공정을 통한 정삼투막 성능 평가)

  • Kim, Bongchul;Boo, Chanhee;Lee, Sangyoup;Hong, Seungkwan
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.292-299
    • /
    • 2012
  • The objective of this study is to develop a novel method for evaluating forward osmosis (FO) membrane performances using a non-pressurized FO system. Basic membrane performance parameters including water (A) and solute (B) permeability coefficients and unique parameter for FO membrane such as the support layer structural parameter (S) were determined in two FO modes (i.e., active layer faces feed solution (AL-FS) and active layer faces draw solution (AL-DS)). Futhermore, these parameters were compared with those determined in a pressurized reverse osmosis (RO) system. Theoretical water flux was calculated by employing these parameters to a model that accounts for the effects of both internal and external concentration polarization. Water flux from FO experiment was compared to theoretical water fluxes for assessing the reliability of those parameters determined in three different operation modes (i.e., AL-FS FO, AL-DS FO, and RO modes). It is demonstrated that FO membrane performance parameters can be accurately measured in non-pressurized FO mode. Specifically, membrane performance parameters determined in AL-DS FO mode most accurately predict FO water flux. This implies that the evaluation of FO membrane performances should be performed in non-pressurized FO mode, which can prevent membrane compaction and/or defect and more precisely reflect FO operation conditions.

Performance and Characterization of Ceramic Membrane by Phase Inversion-Extrusion Process with Polymer Binder Mixing (상전이-압출 알루미나 분리막 제조 공정에서 혼합 고분자 바인더 적용에 따른 성능 및 특성 평가)

  • Sojin Min;Ahrumi Park;Yongsung Kwon;Daehun Kim;You-In Park;Seong-Joong Kim;Seung-Eun Nam
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.439-446
    • /
    • 2023
  • Ceramic membranes are generally used for various industrial processes operating under extreme conditions because of its high thermal and chemical stability. However, due to the trade-off phenomenon of permeability and mechanical strength, preparation of high permeability-high strength membrane is necessary. In this study, the change in characteristics and performances of ceramic membranes was analyzed depending on the type of polymer binder and its mixing ratio. Because the solubility between solvent and polymer binder was higher in PSf (polysulfone) than in PES (polyethersulfone), the viscosity and discharge pressure of the PSf-based dope solution were higher than those of PES-based dope solution. When PSf was used as a polymer binder, ceramic membrane showed high mechanical strength and low water permeability due to the dense structure. On the other hand, in case of PES, the mechanical strength was slightly reduced and the water permeability was increased. It was confirmed that the optimum mixing ratio of the PSf and PES with high water permeability and mechanical strength was 9:1.

Oxygen Permeability Measurement of $ZrO_2-TiO_2-YB_2O_3$ Mixed Conductor

  • Hitoshi Naito;Kim, Hitoshi ishima;Toru Takahashi;Hiroo Yugami
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.124-128
    • /
    • 2000
  • Electrical properties of $ZrO_2-TiO_2Yb_2O_3$mixed conductor (Ti-YbSZ) were investigated. This mixed conductor can be applied as a membrane for gas separation at high temperatures. The total conductivity decreased with increasing the $TiO_2$concentration. At high temperatures, the rate of the conductivity degradation became smaller than that at low temperatures. From the oxygen partial pressure dependence of the total conductivity of Ti-YbSZ, the electronic conductivity increased with increasing $TiO_2$concentration at low oxygen partial pressures and at high temperatures. Both 15 and 20 mol% $TiO_2$doped YbSZ showed high oxygen permeability. Mixed conductors, which has high $TiO_2$concentration in YbSZ, are promising materials for using as a membrane for gas separation at high temperatures.

  • PDF

A Stud on the Water Vapor Permeability of Air Cell Structure of Ultra Rapid Harding Membrane Waterproofing Using Fixed Screw Hybrid Method (고정형 스크류 혼합 방식을 이용한 초속경 도막방수층 에어 셀 구조의 수증기투과성에 관한 연구)

  • Kim, Yun-Ho;Kim, Hyun-Min;Park, Jin-Sang;Song, Je-Young;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.225-226
    • /
    • 2013
  • Existing polyurethane membrane waterproofing has been raised defects such as heaving. Therefore, We will be utilizing as the basic experimental data by the water vapor permeability test to the air cell structure of ultra rapid harding membrane waterproofing using the static mixing system in this study.

  • PDF

Oxygen Permeability and Resistance to Carbon Dioxide of SrCo0.8Fe0.1Nb0.1O3-δ Ceramic Membrane (SrCo0.8Fe0.1Nb0.1O3-δ 세라믹 분리막의 산소투과 특성 및 이산화탄소에 대한 내성)

  • Kim, Eun Ju;Park, Se Hyoung;Park, Jung Hoon;Baek, Il Hyun
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.415-421
    • /
    • 2015
  • $SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$ oxide was synthesized by solid state reaction method. Dense ceramic membrane was prepared using as-prepared powder by pressing and sintering at $1250^{\circ}C$. XRD result of membrane showed single perovskite structure. The oxygen permeability were measured under 0.21 atm of oxygen partial pressure ($P_{O_2}$) and between 800 and $950^{\circ}C$. The oxygen permeation flux of $SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$ membrane was increased with the increasing temperature. The maximum oxygen permeation flux was $1.839mL/min{\cdot}cm^2$ at $950^{\circ}C$. Long period permeability experiment was carried out to confirm the phase stability and $CO_2$-tolerance of membrane containing Nb in the condition of air with $CO_2$ (500 ppm) as feed stream at $900^{\circ}C$. The phase stability and $CO_2$-tolerance of $SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$ were investigated by XRD and TG analysis. The result of $SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$ which exposed carbon dioxide for 100 hours indicated 8wt% of $SrCO_3$. But it was known that the level of $SrCO_3$ production dose not have a significant effect on oxygen permeability.