Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.5.415

Oxygen Permeability and Resistance to Carbon Dioxide of SrCo0.8Fe0.1Nb0.1O3-δ Ceramic Membrane  

Kim, Eun Ju (Department of Chemical and Biochemical Engineering, Dongguk University)
Park, Se Hyoung (Department of Chemical and Biochemical Engineering, Dongguk University)
Park, Jung Hoon (Department of Chemical and Biochemical Engineering, Dongguk University)
Baek, Il Hyun (Korea Institute of Energy Research)
Publication Information
Membrane Journal / v.25, no.5, 2015 , pp. 415-421 More about this Journal
Abstract
$SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$ oxide was synthesized by solid state reaction method. Dense ceramic membrane was prepared using as-prepared powder by pressing and sintering at $1250^{\circ}C$. XRD result of membrane showed single perovskite structure. The oxygen permeability were measured under 0.21 atm of oxygen partial pressure ($P_{O_2}$) and between 800 and $950^{\circ}C$. The oxygen permeation flux of $SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$ membrane was increased with the increasing temperature. The maximum oxygen permeation flux was $1.839mL/min{\cdot}cm^2$ at $950^{\circ}C$. Long period permeability experiment was carried out to confirm the phase stability and $CO_2$-tolerance of membrane containing Nb in the condition of air with $CO_2$ (500 ppm) as feed stream at $900^{\circ}C$. The phase stability and $CO_2$-tolerance of $SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$ were investigated by XRD and TG analysis. The result of $SrCo_{0.8}Fe_{0.1}Nb_{0.1}O_{3-{\delta}}$ which exposed carbon dioxide for 100 hours indicated 8wt% of $SrCO_3$. But it was known that the level of $SrCO_3$ production dose not have a significant effect on oxygen permeability.
Keywords
perovskite; Nb-doping membrane; $CO_2$ tolerance; oxygen permeability; phase stability;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, and R. D. Srivastava, "Advances in $CO_2$ capture technology-the U. S. department of energy's carbon sequestration program", Int. J. Greenh. Gas Control, 2, 9 (2008).   DOI
2 T. Wall, Y. Liu, C. Spero, L. Elliott, S. Khare, R. Rathnam, F. Zeenathal, B. Moghtaderi, B. Buhre, C. Sheng, R. Gupta, T. Yamada, K. Makino, and J. Yu, "An overview on oxyfuel coal combustion- state of the art research and technology development", Chem. Eng. Res. Des., 87, 1003 (2009).   DOI
3 A. Leo, S. Liu, and J. C. D. D. Costa, "Development of mixed conducting membranes for clean coal energy delivery", Int. J. Greenh. Gas Control, 3, 357 (2009).   DOI
4 S. S. Hashim, A. R. Mohamed, and S. Bhatia, "Oxygen separation from air using ceramic-based membrane technology for sustainable fuel production and power generation", Renew. Sust. Energ. Rev., 15, 1284 (2011).   DOI
5 C. Yacou, J. Sunarso, C. X. C. Lin, S. Smart, S. Liu, and J. C. D. D. Costa, "Palladium surface modified $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ hollow fibre for oxygen separation", J. Membr. Sci., 380, 223 (2011).   DOI
6 M. C. Carbo, D. Jansen, C. Hendriks, E. D. Visser, G. J. Ruijg, and J. Davison, "Opportunities for $CO_2$ capture through oxygen conducting membranes at medium-scale oxyfuel coal boilers", Energy Procedia, 1, 487 (2009).   DOI
7 S. Engels, F. Beggel, M. Modigell, and H. Stadler, "Simulation of a membrane unit for oxyfuel power plants under consideration of realistic BSCF membrane properties", J. Membr. Sci., 359, 93 (2010).   DOI
8 H. Stadler, F. Beggel, M. Habermehl, B. Persigehl, R. Kneer, M. Modigell, and P. Jeschke, "Oxyfuel coal combustion by efficient integration of oxygen transport membranes", Int. J. Greenh. Gas Control, 5, 7 (2011).   DOI
9 K. T. Lim, T. L. Cho, K. S. Lee, S. K. Woo, K. B. Park, and J. W. Kim, "Oxygen permeation properties of $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ mixed-conducting membrane", J. Korean. Ceram. Soc., 38, 787 (2001).
10 A. Leo, S. Smart, S. Liu, and J. C. D. D. Costa, "High performance perovskite hollow fibres for oxygen separation", J. Membr. Sci., 368, 64 (2011).   DOI
11 J. P. Kim, J. H. Park, and K. Y. Kim, "Comparison of oxygen permeability and stability of $La_{0.6}Sr_{0.4}B_{0.2}Fe_{0.8}O_{3-\delta}$ (B=Co, Ti) membrane", J. Energy & Climate Change, 2, 75 (2007).
12 S. Song, P. Zhang, M. Han, and S. C. Singhal, "Oxygen permeation and partial oxidation of methane reaction in $Ba_{0.9}Co_{0.7}Fe_{0.2}Nb_{0.1}O_{3-\delta}$ oxygen permeation membrane", J. Membr. Sci., 415, 654 (2012).
13 H. Kusaba, Y. Shibata, K. Sasaki, and Y. Teraoka, "Surface effect on oxygen permeation through dense membrane of mixed-conductive LSCF perovskite- type oxide", Solid State Ionics, 177, 2249 (2006).   DOI
14 S. Diethelm, J. V. herle, P. H. Middleton, and D. Favrat, "Oxygen permeation and stability of $La_{0.4}Ca_{0.6}Fe_{1-x}Co_xO_{3-\delta}$ (x = 0, 0.25, 0.5) membranes", J. Power Sources, 118, 270 (2003).   DOI
15 J. Yi and M. Schroeder, "High temperature degradation of $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$ membranes in atmospheres containing concentrated carbon dioxide", J. Membr. Sci., 378, 163 (2011).   DOI
16 J. Yi, T. E. Weirich, and M. Schroeder, "$CO_2$ corrosion and recovery of perovskite-type $BaCo_{1-x-y}Fe_xNb_yO_{3-\delta}$ membranes", J. Membr. Sci., 437, 49 (2013).   DOI
17 M. Arnold, H. Wang, and A. Feldhoff, "Influence of $CO_2$ on the oxygen permeation performance and the microstructure of perovskite-type $(Ba_{0.5}Sr_{0.5})(Co_{0.8}Fe_{0.2})O_{3-\delta}$ membranes", J. Membr. Sci., 293, 44 (2007).   DOI
18 J. Yi, M. Schroeder, T. Weirich, and J. Mayer, "Behavior of Ba(Co, Fe, Nb)$O_{3-\delta}$ perovskite in $CO_2$-containing atmospheres: Degradation mechanism and materials design", Chem. Mater., 22, 6246 (2010).   DOI
19 Q. Zeng, Y. B. Zuo, C. G. Fan, and C. S. Chen, "$CO_2$-tolerant oxygen separation membranes targeting $CO_2$ capture application", J. Membr. Sci., 335, 140 (2009).   DOI
20 T. Nagai, W. Ito, and T. Sakon, "Relationship between cation substitution and stability of perovskite structure in $SrCoO_{3-\delta}$-based mixed conductors", Solid State Ionics, 177, 3433 (2007).   DOI
21 Y. Cheng, H. Zhao, D. Teng, F. Li, X. Lu, and W. Ding, "Investigation of Ba fully occupied A-site BaCo_{0.7}Fe_{0.3-x}Nb_xO_{3-\delta} perovskite stabilized by low concentration of Nb for oxygen permeation membrane", J. Membr. Sci., 322, 484 (2008).   DOI
22 S. Li, W. Jin, P. Huang, N. Xu, J. Shi, M. Z. C. Hu, E. A. Payzant, and Y. H. Ma, "Perovskite-related $ZrO_2$-doped $SrCo_{0.4}$ $Fe_{0.6}O_{3-\delta}$ membrane for oxygen permeation", Aiche J., 45, 276 (1999).   DOI
23 M. Harada, K. Domen, M. Hara, and T. Tatsumi, "$Ba_{1.0}Co_{0.7}Fe_{0.2}Nb_{0.1}O_{3-\delta}$ dense ceramic as an oxygen permeable membrane for partial oxidation of methane to synthesis gas", Chem. Lett., 35, 1326 (2006).   DOI
24 J. Leitner, M. Hampl, K. Ruzicka, M. Straka, D. Sendmidubsky, and P. Svoboda, "Thermodynamic properties of strontium metaniobate $SrNb_2O_6$", J. Therm. Anal. Calorim., 91, 985 (2008).   DOI
25 J. P. Kim, S. H. Son, J. H. Park, and Y. Lee, "Preparation and oxygen permeability of Nb-doped BCFN ceramic membrane", Membr. J., 21, 55 (2011).
26 S. Kim, Y. L. Yang, R. Christoffersen, and A. J. Jacobson, "Oxygen permeation, electrical conductivity and stability of the perovskite oxide $La_{0.2}Sr_{0.8}Cu_{0.4}Co_{0.6}O_{3-x}$", Solid State Ionics, 104, 57 (1997).   DOI
27 T. Klande, O. Ravkina, and A. Feldhoff, "Effect of A-site lanthanum doping on the $CO_2$ tolerance of $SrCo_{0.8}Fe_{0.2}O_{3-\delta}$ oxygen-transporting membranes", J. Membr. Sci., 437, 122 (2013).   DOI
28 J. H. Park, J. P. Kim, and S. H. Son, "Oxygen permeation and stability of $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$ membrane according to trace elements and oxygen partial pressure in synthetic air", Energy Procedia, 1, 369 (2009).   DOI
29 H. Lu, S. H. Son, J. P. Kim, and J. H. Park, "A Fe/Nb co-doped $Sr(Co_{0.8}Fe_{0.1}Nb_{0.1})O_{3-\delta}$ perovskite oxide for air separation: Structural, sintering and oxygen permeating properties", Mater. Lett., 65, 702 (2011).   DOI