• Title/Summary/Keyword: Membrane Hydrophilicity/Hydrophobicity

Search Result 12, Processing Time 0.026 seconds

A Study on the Preparation and Hydrophilization of Polypropylene Microfiltration Membrane by Radiation-Induced Graft Polymerization (방사선 중합에 의한 폴리프로필렌 정밀여과막의 제조 및 친수화 거동에 관한 연구)

  • 황택성;이선아;황의환
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.621-628
    • /
    • 2000
  • Microporous polypropylene (PP) membranes have the high chemical and corrosion resistance, the good mechanical properties and the thermal stability under high temperatures, but its application is restricted within narrow limits due to hydrophobicity of membranes. In order to impart permanent hydrophilicity to the PP microfiltration membrane, the radiation-induced graft of 2-hydroxyethyl methacrylate (HEMA) and acrylic acid (AAc) containing hydrophilic functional group onto the membrane has been studied. The effect of graft conditions such as reaction time, total radiation dose, reaction temperatures, acid compositions on graft yield was investigated. Modified PP membranes were shown to cause an increase in the gas flux. Oil emulsion permeation flux of both original PP membrane and modified PP membrane was examined.

  • PDF

Influence of Membrane Material and Structure on Fouling of a Submerged Membrane Bioreactor (침지형 막 분리 활성슬러지법에서 막의 재질 및 구조가 파울링에 미치는 영향)

  • Choi, Jae-Hoon;Kim, Hyung-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.1
    • /
    • pp.31-36
    • /
    • 2008
  • This work was performed to evaluate the effect of membrane material and structure on fouling in a submerged membrane bioreactor(MBR). Three types of microfiltration membranes with the same pore size of 0.1 $\mu$m but different materials, polytetrafluoroethylene (PTFE), polycarbonate(PCTE) and polyester(PETE), were used. While PETE membrane exhibited the most rapid flux decline throughout the operation, PCTE and PTFE had a similar tendency with regard to permeability. Difference in permeability between PETE and the other membranes gradually decreased with time, which was probably due to chemical cleaning. The higher TOC rejection of PETE membrane could be attributable to its faster fouling, resulting from a larger amount of foulants to get attached to the membrane in a shorter time. DOC fractionation using a DAX-8 resin showed that the composition of each fraction between the supernatant and permeates did not change significantly with operation time, indicating that membrane hydrophilicity/hydrophobicity was not a dominant factor affecting to MBR fouling in this study. Compared to other membranes, the fouling of PETE membrane was more influenced by pore clogging (irreversible fouling), which would probably contribute to a higher organic rejection of the PETE membrane.

Controlled Release of Drugs from Reservoir Type Devices Coated with Porous Polyurethane Membranes (다공성 폴리우레탄으로 피막된 Reservoir형 약물 조절 방출 시스템)

  • Kim, Kil-Soo;Lee, Seung-Jin
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.4
    • /
    • pp.207-211
    • /
    • 1993
  • Reservoir type devices were designed for long-term implantable drug delivery system. The reservoir type device was prepared with the polymethacrylic acid gel coated with polyurethane membrane. Release controlling agent (RCA) were employed to control drug release from devices via generation of micropores in the membranes. The polyurethane membrane functioned as a rate controlling barrier. The drug release pattern of hydrogel demonstrated zero order kinetics. The release rate of drugs could be regulated by varying hydrophobicity/hydrophilicity and content of the RCA, as well as the thickness of the polyurethane membrane. The release of drugs from this system was governed by pore mechanism via simple diffusion and osmotic pressure.

  • PDF

Surface Modification of Poly(tetrafluoroethylene) (PTFE) Membranes (PTFE 막의 표면 개질 방법)

  • Jun Kyu Jang;Chaewon Youn;Ho Bum Park
    • Membrane Journal
    • /
    • v.33 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • In this review, surface modification methods of hydrophobic poly(tetrafluoroethylene) (PTFE) membrane are introduced and their improved hydrophilicity results are discussed. Fluoropolymer based membranes, represented by PTFE membranes have been used in various membrane separation processes, including membrane distillation, oil separation and gas separation. However, despite excellent physical properties such as chemical resistance, heat resistance and high mechanical strength, the strong hydrophobicity of PTFE membrane surface has become a challenging factor in expanding its membrane separation application. To improve the separation performance of PTFE membranes, wet chemical, hydrophilic coating, plasma, irradiation and atomic layer deposition are applied, modifying the surface property of PTFE membranes while maintaining their inherent properties.

Porous polymer membranes used for wastewater treatment

  • Melita, Larisa;Gumrah, Fevzi;Amareanu, Marin
    • Membrane and Water Treatment
    • /
    • v.5 no.2
    • /
    • pp.147-170
    • /
    • 2014
  • This paper focuses on the study of the most recent ultra-filtration techniques, based on porous polymer membranes, used for the treatment of wastewater from oil, mine and hydrometallurgical industries. The performance of porous membranes used in separation and recovery of oil and heavy metals from wastewater, was evaluated by the polymer composition and by the membrane characteristics, as it follows: hydrophobicity or hydrophilicity, porosity, carrier (composition and concentration), selectivity, fouling, durability, separation efficiency and operating conditions. The oil/water efficient separation was observed on ultra-filtration (UF) techniques, with porous membranes, whereas heavy metals recovery from wastewater was observed using porous membranes with carrier. It can be concluded, that in the ultra-filtration wastewater treatments, a hybrid system, with porous polymer membranes with or without carrier, can be used for these two applications: oil/water separation and heavy metals recovery.

Studies on the Characteristics of the Catalyst Layer of the PEMFC Electrode (고분자전해질용 연료전지의 전극 촉매중 특성에 관한 연구)

  • Sridhar, Parthasarathi;Ihm, Jae-Wook;Yu, Hyung-Kyun;Ryu, Ho-Jin
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.65-67
    • /
    • 2003
  • The present paper highlights on the need to understand the correlation of the characteristics of the catalyst layer with the performance of the polymer electrolyte membrane fuel cell (PEMFC). This paper deals with the correlation of the platinum loading in the catalyst layer and the performance of the polymer electrolyte membrane fuel cell and also the correlation of the required hydrophilicity/hydrophobicity in the catalyst layer to get the optimum performance under given operating conditions.

Development of pH-Responsive Core-Shell Microcapsule Reactor

  • Akamatsu, Kazuki;Yamaguchi, Takeo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.191-194
    • /
    • 2004
  • A novel type of intelligent microcapsule reactor system was prepared. The reactor can recognize pH change in the medea and control reaction rate by itself. For the reactor system, acrylic acid (AA), N-isopropylacrylamide (NIPAM), and glucose oxidase (GOD) were selected as a pH-responsive device, a gating device according and a reaction device, respectively. Poly(NIPAM-co-AA) (P-NIPAM-co-AA) are known to change its hydrophilicity-hydrophobicity due to pH change. They were integrated in a core-shell microcapsule space. GOD was loaded inside the core space and the pores in the outside shell layer were filled with P-NIPAM-co-AA linear grafted chains as pH-responsive gates by plasma graft filling polymerization method. When P-NIPAM-co-AA gates are hydrophilic at high pH value, this microcapsule permits glucose penetration into the core space and GOD reaction proceeds. However, when P-NIPAM-co-AA gates are hydrophobic at low pH value, this microcapsule forbids glucose penetration and GOD reaction will not occur. The accuracy of this concept was examined.

  • PDF

Visualization Study on Microscale Wetting Dynamics of Water Droplets on Dry and Wet Hydrophilic Membranes

  • Park, Kyungjin;Kim, Seong Yeon;Hong, Jiwoo;Kim, Jong Hyun;Lim, Geunbae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.277-281
    • /
    • 2022
  • The wetting dynamics of water droplets dispensed on the surface of dry and wet hydrophilic membranes were investigated experimentally from a microscale point of view. By using a high-speed, white-beam x-ray microimaging (WXMI) synchrotron, consecutive images displaying the dynamic motions of the droplets were acquired. Through analyzing the characteristics observed, it was found that the dry hydrophilic membrane showed local hydrophobicity at a certain point during the absorption process with apparent contact angles greater than 90. While on the other hand, the apparent contact angles of a water droplet absorbing into the wet membrane remained less than 90 and showed total hydrophilicity. The observations and interpretation of characteristics that affect the contact, wetting, recoiling, and dynamic behaviors of droplets are significant for controlling liquid droplet impingement in a desired manner.

Hydrophilic/Hydrophobic Dual Surface Coatings for Membrane Distillation Desalination (막증류 담수화를 위한 친수성/소수성 이중 표면 코팅)

  • Kim, Hye-Won;Lee, Seungheon;Jeong, Seongpil;Byun, Jeehye
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.3
    • /
    • pp.143-149
    • /
    • 2022
  • Membrane distillation (MD) has emerged as a sustainable desalination technology to solve the water and energy problems faced by the modern society. In particular, the surface wetting properties of the membrane have been recognized as a key parameter to determine the performance of the MD system. In this study, a novel surface modification technique was developed to induce a Janus-type hydrophilic/hydrophobic layer on the membrane surface. The hydrophilic layer was created on a porous PVDF membrane by vapor phase polymerization of the pyrrole monomer, forming a thin coating of polypyrrole on the membrane walls. A rigid polymeric coating layer was created without compromising the membrane porosity. The hydrophilic coating was then followed by the in-situ growth of siloxane nanoparticles, where the condensation of organosilane provided quick loading of hydrophobic layers on the membrane surface. The composite layers of dual coatings allowed systematic control of the surface wettability of porous membranes. By the virtue of the photothermal property of the hydrophilic polypyrrole layer, the desalination performance of the coated membrane was tested in a solar MD system. The wetting properties of the dual-layer were further evaluated in a direct-contact MD module, exploring the potential of the Janus membrane structure for effective and low-energy desalination.

Applications of Enzyme Immobilized Membranes: A Review (효소 고정화막의 응용에 대한 총설)

  • Ryu, Junghyun;Patel, Rajkumar;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.393-403
    • /
    • 2021
  • Enzymes are important class of catalyst for biotransformation. Stability and reusability of enzymes during the catalysis process is a key issue. Activity of enzyme can be enhanced by its immobilization on a suitable substrate by creation of specific microenvironment. A variety of membranes has been used as substrate due to the biocompatibility and simpler method to tune hydrophilicity/hydrophobicity property of the membrane surface. In this review, polymer membranes including cellulose, polyacrylonitrile (PAN), polydimethylsiloxane (PDMS), polyvinylidene fluoride (PVDF), polyethersulfone (PES) are introduced and discussed in detail. Biodegradation of organic contaminants by immobilized enzyme is an environmental friendly process to reduce the contamination of environment in pharmaceutical company and textile industries. The controlled hydrolysis of oil can be performed in enzyme immobilized membrane bioreactor (EMBR), resulting in reducing carbon emission and reduced environmental pollution. Bioethanol and biodiesel are considered alternative fossil fuels that can be prepared in EMBR.