Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.6.393

Applications of Enzyme Immobilized Membranes: A Review  

Ryu, Junghyun (Life Science and Biotechnology Department (LSBT), Underwood Division (UD), Underwood International College, Yonsei University)
Patel, Rajkumar (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
Publication Information
Membrane Journal / v.31, no.6, 2021 , pp. 393-403 More about this Journal
Abstract
Enzymes are important class of catalyst for biotransformation. Stability and reusability of enzymes during the catalysis process is a key issue. Activity of enzyme can be enhanced by its immobilization on a suitable substrate by creation of specific microenvironment. A variety of membranes has been used as substrate due to the biocompatibility and simpler method to tune hydrophilicity/hydrophobicity property of the membrane surface. In this review, polymer membranes including cellulose, polyacrylonitrile (PAN), polydimethylsiloxane (PDMS), polyvinylidene fluoride (PVDF), polyethersulfone (PES) are introduced and discussed in detail. Biodegradation of organic contaminants by immobilized enzyme is an environmental friendly process to reduce the contamination of environment in pharmaceutical company and textile industries. The controlled hydrolysis of oil can be performed in enzyme immobilized membrane bioreactor (EMBR), resulting in reducing carbon emission and reduced environmental pollution. Bioethanol and biodiesel are considered alternative fossil fuels that can be prepared in EMBR.
Keywords
enzyme immobilized membrane bioreactor; bioethanol; biodiesel; bio degradation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. P. Cipolatti, M. J. A. Silva, M. Klein, V. Feddern, M. M. C. Feltes, J. V. Oliveira, J. L. Ninow, and D. De Oliveira, "Current status and trends in enzymatic nanoimmobilization", J. Mol. Catal. B Enzym., 99, 56 (2014).   DOI
2 A. Mehta, U. Bodh, and R. Gupta, "Fungal lipases: A review", J. Biotech Res. 8, 58 (2017).
3 R. E. Gumba, S. Saallah, M. Misson, C. M. Ongkudon, and A. Anton, "Green biodiesel production: A review on feedstock, catalyst, monolithic reactor, and supercritical fluid technology", Biofuel Res. J., 3, 431 (2016).   DOI
4 H. Park, I. Park, and S. Yoo, "How to Design Membrane Chromatography for Bioseparations: A Short Review", Membr. J., 31, 145 (2021).   DOI
5 T. Choi and H. Park, "Membrane and Virus Filter Trends in the Processes of Biopharmaceutical Production", Membr. J., 30, 9 (2020).   DOI
6 M. Taheran, S. K. Brar, M. Verma, R. Y. Surampalli, T. C. Zhang, and J. R. Valero, "Membrane processes for removal of pharmaceutically active compounds (PhACs) from water and wastewaters", Sci. Total Environ., 547, 60 (2016).   DOI
7 M. L. Verma, C. J. Barrow, and M. Puri, "Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production", Appl. Microbiol. Biotechnol., 97, 23 (2013).   DOI
8 Y. Li, W. Wei, Q. Cao, and F. Feng, "New materials for immobilized lipase", J. Chin. Cereals Oils Assoc., 29, 122 (2014).
9 K. Min, A. Yoo, and K. Youm, "Preparation and Characteristics of P(AN-co-MA) Membrane Imprinted with Lysozyme Molecules", Membr. J., 31, 219 (2021).   DOI
10 V. Pillay, C. Dott, Y. E. Choonara, C. Tyagi, L. Tomar, P. Kumar, L. C. Du Toit, and V. M. K. Ndesendo, "A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications", J. Nanomater. 789289, (2013).
11 M. Taheran, M. Naghdi, S. K. Brar, E .J. Knystautas, M. Verma, and R. Y. Surampalli, "Degradation of chlortetracycline using immobilized laccase on Polyacrylonitrile-biochar composite nanofibrous membrane", Sci. Total Environ., 605-606, 315 (2017).   DOI
12 W. Shuai, R. K. Das, M. Naghdi, S. K. Brar, and M. Verma, "A review on the important aspects of lipase immobilization on nanomaterials", Biotechnol. Appl. Biochem., 64, 496 (2017).   DOI
13 P. C. Chen, X. J. Huang, F. Huang, Y. Ou, M. R. Chen, and Z. K. Xu, "Immobilization of lipase onto cellulose ultrafine fiber membrane for oil hydrolysis in high performance bioreactor", Cellulose, 18, 1563 (2011).   DOI
14 P. C. Chen, X. J. Huang, and Z. K. Xu, "Kinetics-bolstered catalytic study of a high performance lipase-immobilized nanofiber membrane bioreactor", RSC Adv., 4, 6151 (2014).   DOI
15 M. Taheran, M. Naghdi, S. K. Brar, E. J. Knystautas, M. Verma, and R. Y. Surampalli, "Covalent Immobilization of Laccase onto Nanofibrous Membrane for Degradation of Pharmaceutical Residues in Water", ACS Sustainable Chem. Eng., 5, 10430 (2017).   DOI
16 B. Xie, W. Gong, H. Yu, X. Tang, Z. Yan, X. Luo, Z. Gan, T. Wang, G. Li, and H. Liang, "Immobilized micro-algae for anaerobic digestion effluent treatment in a photobioreactor-ultrafiltration system: Algal harvest and membrane fouling control", Bioresour. Technol., 268, 139 (2018).   DOI
17 R. Xu, J. Cui, R. Tang, F. Li, and B. Zhang, "Removal of 2,4,6-trichlorophenol by laccase immobilized on nano-copper incorporated electrospun fibrous membrane-high efficiency, stability and reusability", Chem. Eng. J., 326, 647 (2017).   DOI
18 D. Cai, S. Hu, C. Chen, Y. Wang, C. Zhang, Q. Miao, P. Qin, and T. Tan, "Immobilized ethanol fermentation coupled to pervaporation with silicalite-1/polydimethylsiloxane/polyvinylidene fluoride composite membrane", Bioresour. Technol., 220, 124 (2016).   DOI
19 P. C. Chen, X. J. Huang, and Z. K. Xu, "Utilization of a biphasic oil/aqueous cellulose nanofiber membrane bioreactor with immobilized lipase for continuous hydrolysis of olive oil", Cellulose, 21, 407 (2014).   DOI
20 M. L. Verma, M. Puri, and C. J. Barrow, "Recent trends in nanomaterials immobilised enzymes for biofuel production", Crit. Rev. Biotechnol., 36, 108 (2016).   DOI
21 R. Xu, R. Tang, Q. Zhou, F. Li, and B. Zhang, "Enhancement of catalytic activity of immobilized laccase for diclofenac biodegradation by carbon nanotubes", Chem. Eng. J., 262, 88 (2015).   DOI
22 Y. Li, H. Wang, J. Lu, A. Chu, L. Zhang, Z. Ding, S. Xu, Z. Gu, and G. Shi, "Preparation of immobilized lipase by modified polyacrylonitrile hollow membrane using nitrile-click chemistry", Bioresour. Technol., 274, 9 (2019).   DOI
23 F. Jafarian, A. K. Bordbar, A. Razmjou, and A. Zare, "The fabrication of a high performance enzymatic hybrid membrane reactor (EHMR) containing immobilized Candida rugosa lipase (CRL) onto graphene oxide nanosheets-blended polyethersulfone membrane", J. Membr. Sci., 613, 118435 (2020).   DOI
24 E. L. I. Santos, M. Rostro-Alanis, R. Parra-Saldivar, and A. J. Alvarez, "A novel method for bioethanol production using immobilized yeast cells in calcium-alginate films and hybrid composite pervaporation membrane", Bioresour. Technol., 247, 165 (2018).   DOI
25 N. Elias, R. A. Wahab, L. W. Jye, N. A. Mahat, S. Chandren, and J. Jamalis, "Taguchi orthogonal design assisted immobilization of Candida rugosa lipase onto nanocellulose-silica reinforced polyethersulfone membrane: physicochemical characterization and operational stability", Cellulose, 28, 5669 (2021).   DOI
26 M. Aghababaie, M. Beheshti, A. Razmjou, and A. K. Bordbar, "Covalent immobilization of Candida rugosa lipase on a novel functionalized Fe3O4@SiO2 dip-coated nanocomposite membrane", Food Bioprod. Process., 100, 351 (2016).   DOI
27 R. Xu, Y. Si, F. Li, and B. Zhang, "Enzymatic removal of paracetamol from aqueous phase: horseradish peroxidase immobilized on nanofibrous membranes", Environ. Sci. Pollut. Res., 22, 3838 (2015).   DOI
28 R. Xu, C. Chi, F. Li, and B. Zhang, "Immobilization of horseradish peroxidase on electrospun microfibrous membranes for biodegradation and adsorption of bisphenol A", Bioresour. Technol., 149, 111 (2013).   DOI
29 Z. Zhang, S. Liu, T. Miyoshi, H. Matsuyama, and J. Ni, "Mitigated membrane fouling of anammox membrane bioreactor by microbiological immobilization", Bioresour. Technol., 201, 312 (2016).   DOI
30 S. K. Suman, P. L. Patnam, S. Ghosh, and S. L. Jain, "Chicken Feather Derived Novel Support Material for Immobilization of Laccase and Its Application in Oxidation of Veratryl Alcohol", ACS Sustain. Chem. Eng., 7, 3464 (2019).   DOI
31 S. Smith, K. Goodge, M. Delaney, A. Struzyk, N. Tansey, and M. Frey, "A comprehensive review of the covalent immobilization of biomolecules onto electrospun nanofibers", Nanomaterials, 10,1 (2020).
32 J. Rong, T. Zhang, F. Qiu, and Y. Zhu, "Preparation of Efficient, Stable, and Reusable Laccase-Cu3(PO4)2 Hybrid Microspheres Based on Copper Foil for Decoloration of Congo Red", ACS Sustain. Chem. Eng., 5, 4468 (2017).   DOI