• Title/Summary/Keyword: Membrane Flux

Search Result 1,026, Processing Time 0.036 seconds

Fouling control in a woven fibre microfiltration membrane for water treatment

  • Chollom, Martha Noro;Rathilal, Sudesh;Pikwa, Kumnandi;Pillay, Lingham
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.418-426
    • /
    • 2019
  • Current available commercial membranes are not robust and are therefore destroyed if left to dry out or handled roughly. Woven fibre microfiltration (WFMF) membranes have advantages over its competitors with respect to durability, thus, favourable for the developing economies and operation during rough conditions. Evaluation of the effects of aeration and brushing as a flux enhancement strategies for WFMF membrane was the purpose of this study. The WFMF membrane was found to be susceptible to pore plugging by colloidal material and adsorption/attachment by microbiological contaminants. This led to a 50% loss in flux. Aeration as a single flux enhancement strategy proved insufficient to maintain high flux successfully. Therefore combined flux enhancement strategies yielded the best results.

Harvesting of microalgae via submerged membranes: flux, fouling and its reversibility

  • Elcik, Harun;Cakmakci, Mehmet
    • Membrane and Water Treatment
    • /
    • v.8 no.5
    • /
    • pp.499-515
    • /
    • 2017
  • The purpose of this study was to investigate membrane fouling caused by microalgal cells in submerged membrane systems consisting of polymeric and ceramic microfiltration membranes. In this study, one polymeric (flat-sheet, pore size: $0.2{\mu}m$) and two ceramic (flat-sheet, pore size: $0.2{\mu}m$ and cylindrical, pore size: $1{\mu}m$) membranes were used. Physical cleaning was performed with water and air to determine the potential for reversible and irreversible membrane fouling. The study results showed that substantial irreversible membrane fouling (after four filtration cycles, irreversible fouling degree 27% (cleaning with water) and 38% (cleaning with air)) occurs in the polymeric membrane. In cleaning studies performed using water and air on ceramic membranes, it was observed that compressed air was more effective (recovery rate: 87-91%) for membrane cleaning. The harvesting performance of the membranes was examined through critical flux experiments. The critical flux values for polymeric membrane with a pore size of $0.20{\mu}m$ and ceramic membranes with a pore size of $0.20{\mu}m$ and $1{\mu}m$ were ${\leq}95L/m^2hour$, ${\leq}70L/m^2hour$ and ${\leq}55L/m^2hour$, respectively. It was determined that critical flux varies depending on the membrane material and the pore size. To obtain more information on membrane fouling caused by microalgal cells, the characterization of the fouled polymeric membrane was performed. This study concluded that ceramic membranes with a pore size of $0.2-1{\mu}m$ in the submerged membrane system could be efficiently used for microalgae harvesting by cleaning the membrane with compressed air at regular intervals.

Optimization of chemical cleaning of discarded reverse osmosis membranes for reuse

  • Jung, Minsu;Yaqub, Muhammad;Lee, Wontae
    • Membrane and Water Treatment
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • This study optimized the chemical cleaning process of discarded RO membranes for reuse in less demanding separation processes. The effect of physicochemical parameters, including the temperature, cleaning time, pH of the cleaning solution, and addition of additives, on the cleaning process was investigated. The membrane performance was evaluated by testing the flux recovery rate and salt rejection before and after the cleaning process. High temperatures (45-50 ℃) resulted in a better flux recovery rate of 71% with more than 80% salt rejection. Equal time for acid and base cleaning 3-3 h presented a 72.43% flux recovery rate with salt rejection above 85%. During acid and base cleaning, the best results were achieved at pH values of 3.0 and 12.0, respectively. Moreover, 0.05% concentration of ethylenediaminetetraacetic acid presented 72.3% flux recovery, while 69.2% flux was achieved using sodium dodecyl sulfate with a concentration of 0.5%; both showed >80% salt rejection, indicating no damage to the active layer of the membrane. Conversely, 0.5% concentration of sodium percarbonate showed 83.1% flux recovery and 0.005% concentration of sodium hypochlorite presented 85.2% flux recovery, while a high concentration of these chemicals resulted in oxidation of the membrane that caused a reduction in salt rejection.

Impacts of sludge retention time on membrane fouling in thermophilic MBR

  • Ince, Mahir;Topaloglu, Alikemal
    • Membrane and Water Treatment
    • /
    • v.9 no.4
    • /
    • pp.245-253
    • /
    • 2018
  • The aim of this study is to investigate the membrane fouling in a thermophilic membrane bioreactor (TMBR) operated different sludge retention times (SRTs). For this purpose, TMBR was operated at four different SRTs (10, 30, 60 and 100 days). Specific cake resistance (${\alpha}$), cake resistance, gel resistance, total resistance, MFI (modified fouling index) and FDR (flux decrease ratio) were calculated for all SRTs. It was observed that flux in the membrane increases with rising SRT although the sludge concentrations in the TMBR increased. The steady state flux was found to be 31.78; 34.70; 39.60 and 43.70 LMH ($Liter/m^2/h$) for the SRTs of 10, 30, 60 and 100 days respectively. The concentrations of extracellular polymeric substance (EPS) and soluble microbial product (SMP) decreased with increasing SRT. The membrane fouling rate was higher at shorter SRT and the highest fouling rate appeared at an SRT of 10 d. Both the sludge cake layer and gel layer had contribution to the fouling resistance, but the gel layer resistance value was dominant in all SRTs.

A Study on Membrane Fouling by Flux and Linear Velocity in Coagulation/Ultrafiltration Membrane System (응집·한외여과 조합공정에서 플럭스와 선속도가 막오염에 미치는 영향에 관한 연구)

  • Moon, Seong-Yong;Lee, Sang-Hyup;Kim, Seung-Hyun;Yoon, Cho-Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.4
    • /
    • pp.429-436
    • /
    • 2005
  • A coagulation/ultrafiltration membrane hybrid system was operated to treat river water with capacity of $0.06m^3/d$. The impact on membrane fouling by flux and linear velocity was investigated. It is known that pressure increase is proportional to flux increase. However, pressure increase was much faster than theoretical value in the pilot plant test. So it was suggested that flux was on important factor in ultrafiltration of continuous operation. Membrane fouling was decreased when linear velocity was increased. This phenomenon was found more obviously without coagulation. With the combination of coagulation and sedimentation, membrane fouling was not reduced conspicuously. Big particles formed during coagulation and sedimentation were destroyed by feed and circulation pumping, which resulted in little effect on membrane fouling reduction. The degree of destruction was similar at various linear velocities. In this study, the hollow fiber membrane was used and the system was operated in pressure type module. In case of the system used in this study, membrane fouling has been affected lightly by linear velocity variation when coagulation pretreatment was applied.

Separation of Alcohol/water Mixtures with Surface-modified Alumina Membrane in Vapor Permeation (표면개질 알루미나막의 증기투과에 의한 알코올의 분리)

  • 이상인;오한기;이광래
    • Membrane Journal
    • /
    • v.10 no.3
    • /
    • pp.121-129
    • /
    • 2000
  • The membrane requires both high in selectivity and flux. However, the permselective membrane has low flux. In this study, the porous alumina membrane was coated with silane coupling agent in order to enhance the flux with proper selectivity. The contact angle of water to the surface-modified alumina membrane was greater than 90$^{\circ}$, which indicated the high hydrophobicity. The modified membrane was tested in vapor permeation for the concentration of aqueous ethanol, isopropanol, and n-butanol. With the increase of ethanol, isopropanol, butanol concentration in the feed, permeation flux increased due to the greater affinity of ethanol, isopropanol, butanol with surface-modified alumina membrane than that of water. The experimental results showed that the permeation tate of surface-modified alumina membrane was 20~1000 times greater than that of a polymer membranes.

  • PDF

Recent progress in supported liquid membrane technology: stabilization and feasible applications

  • Molinari, Raffaele;Argurio, Pietro
    • Membrane and Water Treatment
    • /
    • v.2 no.4
    • /
    • pp.207-223
    • /
    • 2011
  • Supported Liquid Membranes (SLMs) have been widely studied as feasible alternative to traditional processes for separation and purification of various chemicals both from aqueous and organic matrices. This technique offers various advantages like active transport, possibility to use expensive extractants, high selectivity, low energy requirements and minimization of chemical additives. SLMs are not yet used at large scale in industrial applications, because of the low stability. In the present paper, after a brief overview of the state of the art of SLM technology the facilitated transport mechanisms of SLM based separation is described, also introducing the small and the big carrousel models, which are employed for transport modeling. The main operating parameters (selectivity, flux and permeability) are introduced. The problems related to system stabilization are also discussed, giving particular attention to the influence of membrane materials (solid membrane support and organic liquid membrane (LM) phase). Various approaches proposed in literature to enhance SLM stability are also reviewed. Modification of the solid membrane support, creating an additional layer on membrane surface, which acts as a barrier to LM phase loss, increases system stability, but the membrane permeability, and then the flux, decrease. Stagnant Sandwich Liquid Membrane (SSwLM), an implementation of the SLM system, results in both high flux and stability compared to SLM. Finally, possible large scale applications of SLMs are also reviewed, evidencing that if the LM separation process is opportunely carried out (no production of byproducts), it can be considered as a green process.

Separation of Heavy Metal Ions across Novel Mosaic Membrane (하전모자이크 막을 사용하여 중금속이온의 분리)

  • Song, Myung-Kwan;Lee, Jang-Oo;Yang, Wong-Kang
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2005.11a
    • /
    • pp.96-101
    • /
    • 2005
  • A theory for the material transports through ion exchange membrane has been developed on the basis of nonequilibrium thermodynamics by removing the assumption of solvent flow in the previous paper and applied to a detailed study of the ionic transport properties of new charged mosaic membrane(CMM) system. The CMM having two different fixed charges in the polymer membrane indicated unique selective transport behavior then ion-exchange membrane. The separation behavior of ion transport across the CMM with a parallel array of positive and negative functional charges were investigated. It was well-known the analysis of the volume flux and solute flux based on nonequilibrium thermodynamics. Our suggests preferential salt transport across the charged mosaic membranes. Transport properties of heavy metal ions, $Mg^{2+}$, $Mn^{2+}$and sucrose system across the charged mosaic membrane were estimated. As a result, we were known metal salts transport depended largely on the CMM. The reflection coefficient indicated the negative value that suggested preferential material transport and was independent of charged mosaic membrane thickness.

  • PDF

Physicochemical Effect on Permeate Flux in a Hybrid Ozone-Ceramic Ultrafiltration Membrane Treating Natural Organic Matter (자연유기물을 처리하는 혼합 오존-세라믹 한외여과 시스템에서 물리화학적 특성이 투과플럭스에 미치는 영향)

  • Kim, Jeong-Hwan
    • Membrane Journal
    • /
    • v.18 no.4
    • /
    • pp.354-361
    • /
    • 2008
  • Effects of operational conditions and solution chemistry on permeate flux in a hybrid ozone-ceramic ultra-filtration (UF) membrane system treating natural organic matter (NOM) were investigated. Results showed that the extent of permeate flux decline was higher at higher cross-flow velocity and ozone dosage, but it was higher at lower transmembrane pressure (TMP). The mechanism of fouling mitigation was found to be more dependent upon reaction between ozone and natural organic matter at/near catalytic membrane surface than scouring effect due to ozone gas bubbles. Addition of calcium into model NOM solution at high pH led to significant decline in permeate flux while the calcium effect on permeate flux decline was less pronounced at lower pH. After permeate flux decline during the early stage of filtration, the flux started recovering and approached fully to the initial value of it due to degradation of NOM by catalytic ozonation at ceramic membrane surface in the hybrid ozone-ceramic membrane system.

Effect of Pretreatment Process on Hybrid Membrane Filtration Performance (원수의 물리.화학적 특성에 따른 막 분리 공정의 전처리 공정 적용성 평가)

  • Jung, Chul-Woo;Son, Hee-Jong;Bae, Sang-Dae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.613-619
    • /
    • 2006
  • The objectives of this research are to evaluate the effect of membrane materials, particulate matter and membrane pore size on permeate flux. It was shown that the removal efficiency of high MW organic matter more than 10 kDa was lower than that of low MW organic matter for $MIEX^{(R)}$ process. For the change of permeate flux by the pretreatment process, $MIEX^{(R)}+UF$ process showed high removal efficiency of organic matter as compared with coagulation+UF processes, but high reduction rate of permeate flux was presented through the reduction of removal efficiency of high MW organic matter. The pretreatment of the raw water significantly reduced the fouling of the hydrophilic membrane, but did not decrease the flux reduction of the hydrophobic membrane. Flux decline on MF process increased due to the pore clogging, while the permeate flux decline of UF process decreased due to the formation of cake layer. It was shown that particle matter was not effect on MIEX+membrane process. But, for coagulation+membrane process, particle matter was important factor on permeate flux.