• Title/Summary/Keyword: Membrane Diffusion

Search Result 481, Processing Time 0.026 seconds

Diffusion Coefficients and Membrane Potential within Carrier Membrane by Reverse Transport System

  • Yang, Wong-Kang;Jeong, Sung-Hyun;Lee, Won-Chul
    • Korean Membrane Journal
    • /
    • v.4 no.1
    • /
    • pp.36-40
    • /
    • 2002
  • The diffusion coefficients of ions in the reverse transport system using the carrier mediated membrane were estimated from the diffusional membrane permeabilities and the ion activity in membrane system. In the aqueous alkali metal ions-membrane system diffusional flux of alkali metal ions driven by coupled proton was analyzed. The aqueous phase I contained NaOH solution and the aqueous phase II also contained NaCl and HCl mixed solution. The concentration of Na ions of both phases were $10^{0},\;10^{-1},\;10^{-2},\;5{\times}10^{-1}\;and\;5{\times}10^{-2}\;mol{\cdot}dm^{-3}$ and the concentration of HCI in aqueous phase II was always kept at $1{\times}10^{-1}\;mol{\cdot}dm^{-3}$. Moreover, the carrier concentration in liquid membrane was $10^{-2}\;mol{\cdot}dm^{-3}$. The results indicated that the diffusion coefficients depend strongly on the concentration of both phases electrolyte solution equilibriated with the membrane. The points were interpreted in terms of the energy barrier theory. Furthermore, eliminating the potential terms from the membrane equation was derived.

Controlled Release of Isonicontinic Acid Hydrazide from the Membrane-Coated Tablet

  • Kim, Ki-Man;Kim, Shin-Keun
    • Archives of Pharmacal Research
    • /
    • v.8 no.1
    • /
    • pp.7-14
    • /
    • 1985
  • Membrane-coated tablet of isonicotinic acid hydrazide (INAH) which releases INAH at the zero-order kinetics was deveoped. It consisted of a soluble tablet core surrounded by a porous membrane which controls the diffusion rate. Tablet cores were prepared by compressing granules of INAH and polyvinyl chloride (PVC) dissolved in methyl ethyl ketone in which micronized sucrose were suspended. Diffusion rate of INAH from the tablet through the membrane was constant until the loaded INAH in the core was almost released. The rate was independent of pH of the dissolution medium. Water-soluble sucrose particles behaved as a poreproducing material in the water-insoluble PVC film coat. The pH independency of the rate was probably due to the high solubility of INAH in the water of wide pH range. The diffusion rate of INAH could be controlled by chnaging the composition of the membrane or the coat weight. This membrane-coated INAH tablet seemed to be a powerful candidate for the controlled release drug delivery system (DDS) of INAH or other highly watersoluble drugs.

  • PDF

Preferential Sorption and Its Role on Pervaporation of Organic Liquid Mixtures

  • 박현채;김은영
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.04a
    • /
    • pp.34-35
    • /
    • 1995
  • The unique feature of pervaporation is the mass transfer from a liquid phase to a vapor phase through a non-porous polymeric membrane. When a liquid mixture is brought into contact with a membrane at one side, it is sorbed into the membrane. Due to a driving force applied across the membrane, the sotbed liquid molecules permeate through the membrane and evaporate at the downstream side of the membrane. In pervaporation the permeated species are usually removed from the downstream side under a relatively low vapor pressure, for example by evacuation with a vacuum pump. As far as this condition is fulfilled, the evaporation step can be considered to be much faster than sorption or diffusion. Hence evaporation does not contribute to permselectivity. Therefore the separation by pervaporation results from the differences in the preferential sorption of the individual components of a mixture into the membrane together with the diffusion rates through the membrane. This postulation implies that both sorption and diffusion phenomena have to be accounted for to understand the physico-chemical nature of the pervaporation separation process.

  • PDF

Solvent diffusion model in polymer membrane (고분자막내에서 용매 확산 모델)

  • 김종수;이광래
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.59-62
    • /
    • 1998
  • 1. 서론 : 막내부에서 물질전달을 설명하는 이론으로 현재 solution-diffusion model과 pore-flow model 두 가지가 있다. 이 중에서 흡착, 확산, 탈착의 3과정을 거치는 solution-diffusion model이 주로 사용되고 있다. 본 연구에서는 solution-diffusion model 에서 상호확산계수를 구하기 위해서 Vrentas-Duda식을 이용하여 자기확산계수를 구하고 Bearman식으로부터 상호확산계수를 구하는 과정을 UNIFAC-FV와 modified UNIFAC-FV을 이용하여 계산하였으며 Flory-Huggins식을 이용한 기존방법과 비교하였다.(생략)

  • PDF

Microporous Ceramic Membrane and Its Gas Separation Performance

  • Li, Lin;Li, Junhui;Qi, Xiwang
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.04a
    • /
    • pp.16-19
    • /
    • 1996
  • Separation with synthetic membrane have become increasingly important processes in many fields. In the most application of membrane process, polymer membrane is used. the main advantage of polymers as a material for membrane preparation is the relative simplicity of this film formation which enables one to obtain rather high permeability rates. However, polymeric membranes have several limitations, such as high temperature instability, swelling and decomposition in organic solvent, et. al.. These limitations can be overcome by inorganic membrane. At the present time, commercially available inorganic membranes have pore diameters ranging 5nm to 50mm, and the predominant flow regime in such membrane is Knudsen diffusion. Since the Knudsen permeability is directly proportional to the molecular velocity, gases can be separated due to their molecular masses. However, this separation mechanism is only of important for light gases such as H2 and He. Other separation mechanisms like surface diffusion, active diffusion can play an important role only with very small pore diameters(2nm) and give rise to large permselectivities. Therefore, preparation of inorganic membrane with nano-sized pore have been attracting more and more attention.

  • PDF

The Effect of the Molecular Weight of Poly(ethylene glycol) on Diffusion through Cellulose (폴리에틸렌글리콜의 분자량에 따른 셀룰로스에서의 확산 거동)

  • 윤기종;우종형;서영삼
    • Textile Coloration and Finishing
    • /
    • v.16 no.1
    • /
    • pp.48-52
    • /
    • 2004
  • Diffusion/penetration rates of finishing agents are not a major criterion in the design of low molecular weight finishing agents. However, in the case of polymeric finishing agents, high molecular weights result in large hydrodynamic volumes and diffusion/penetration of the finishing agent into the substrate may become a critical factor in the design of textile finishing agents. Thus the effect of the molecular weight of a model compound, polyethylene glycol, on its diffusion through a cellulose membrane or cotton fabric is studied. Diffusion experiments of polyethylene glycol of molecular weight 400, 1000, 2000, 4600, 8000, and 10000 through cellulose membrane or fabric was carried out in a glass U-tube diffusion apparatus and the half penetration times and the penetration coefficients were determined. Both the half penetration times and the penetration coefficients exhibited a significant change between molecular weight 2000 and 2500 as the molecular weight of polyethylene glycol increased, suggesting that there is a critical molecular weight above which diffusion/penetration becomes difficult. Based on this study on a model compound, it is suggested that polymeric textile finishing agents can be expected to exhibit similar behavior.

Effects of Nickel Supports on Hydrogen Permeability of Vanadium based Membrane (니켈 지지체를 이용한 바나듐기 분리막의 수소 투과특성)

  • Cho, Kyoungwon;Choi, Jaeha;Jung, Seok;Kim, Raymundk.I.;Hong, Taewhan;Ahn, Joongwoo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.3
    • /
    • pp.200-205
    • /
    • 2013
  • The separation of hydrogen depends on porosity, diffusivity and solubility in permeation membrane. Dense membrane is always showing a solution diffusion mechanism but porous membrane is not showing. Therefore, porous membrane has a good hydrogen flux due to pore is carried out transferred media. This mechanism is named as the Knudsen diffusion. Hydrogen molecules or hydrogen atoms are diffused along pore that is a mean free path. In this study, complex layer hydrogen permeation membrane was fabricated by hot press process. And then, it was evaluated and calculated to relationship between hydrogen permeability and membrane porosity.

Interpretation of Permeation Characteristics and Membrane Transport Models Through Polyamide Reverse Osmosis Membrane (Polyamide 역삼투막의 투과성능과 막 이동 모델의 해석)

  • 김노원;김영길;이용택
    • Membrane Journal
    • /
    • v.14 no.1
    • /
    • pp.75-84
    • /
    • 2004
  • In this study, we present a noble study far membrane transport models using chlorine resistance of polyamide RO membranes. Membrane transport mechanism is investigated by the comparison of membrane permeation performance under the continuous and Intermittent operation modes with mixed feed solution containing NaOCl and NaCl. Analysis of permeation performance indicates that solution-diffusion model and preferential adsorption-capillary flow model are relatively efficient according to operation mode. Under the continuous flow state, mass transfer depends on preferential adsorption-capillary flow model rather than solution-diffusion model. On the other hand, it prefers solution-diffusion model to preferential adsorption-capillary flow model under the stationary state. SEM images of NaOCl treated membrane surfaces strongly support these conclusions. These surface images reveal that NaOCl treated membrane in continuous operation mode exhibits ridge and valley structure in some fraction of the surface area, whereas that in intermittent operation mode shows surface degradation entirely.

Transport of Water through Polymer Membrane in Proton Exchange Membrane Fuel Cells (고분자전해질 연료전지에서 고분자막을 통한 물의 이동)

  • Lee, Daewoong;Hwang, Byungchan;Lim, Daehyun;Chung, Hoi-Bum;You, Seung-Eul;Ku, Young-Mo;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.338-343
    • /
    • 2019
  • The water transport and water content of the electrolyte membrane greatly affect the performance of the membrane in PEMFC(Proton Exchange Membrane Fuel Cell). In this study, the parameters (electroosmotic coefficient, water diffusion coefficient) of polymer membranes for water transport were measured by a simple method, and water flux and ion conductivity were simulated by using a model equation. One dimensional steady state model equation was constructed by using only the electro-osmosis and diffusion as the driving force of water transport. The governing equations were simulated with MATLAB. The electro-osmotic coefficient of $144{\mu}m$ thick polymer membranes was measured in hydrogen pumping cell, the value was 1.11. The water diffusion coefficient was expressed as a function of relative humidity and the activation energy for water diffusion was $2,889kJ/mol{\cdot}K$. The water flux and ion conductivity results simulated by applying these coefficients showed good agreement with the experimental data.

A Study on Transport Characteristics of Hydrochloric Acid in an Anion Exchange Membrane (음이온 교환막에서 염산의 이동특성 연구)

  • 강문성;오석중;문승현
    • Membrane Journal
    • /
    • v.8 no.3
    • /
    • pp.148-156
    • /
    • 1998
  • Diffusion dialysis is a membrane process driven by concentration difference using ion-exchange membranes and has been employed for many years for the acid recovery from acidic waste generated in steel, metal-refining and dectro-plating industries. Theoretically acid flux increases in propomon to the acid concentration difference. At acid concentrations higher than 3 N HCl, however, the acid flux had not increased linearly with the concentration difference. In this paper the effects of acid concentrations on diffusion dialysis for hydrochloric acid recovery and the acid transport mechanism in an anion exchange membrane were studied by membrane sorption tests and diffusion clialysis cell tests. The experimental results showed that the molecular diffusion was a major transport mechanism in a low acid concentration range and the proton leakage through an anion exchange membrane played an important role at higher acid concentrations. Also osmotic water transport and membrane dehydration retarded the transport of protons and caused the permeate flux to decrease.

  • PDF