• Title/Summary/Keyword: Melting properties

검색결과 1,103건 처리시간 0.03초

자체 용설 아스팔트 혼합물의 용빙특성 분석 (Evaluation of Self-deicing Function of Snow-melting Asphalt)

  • 김광우;이기호;홍상기;진호일;도영수
    • 한국도로학회논문집
    • /
    • 제5권2호
    • /
    • pp.1-14
    • /
    • 2003
  • 본 연구는 도로 포장에 자체 융설 아스팔트 혼합물의 적용을 위해, 융빙특성을 분석하는 기초연구의 일환으로 수행되었다. 본 연구의 목적은 이러한 문제점을 해결하기 위해 아스콘 제조시 지속성있는 융설제를 첨가하여 높은 융설기능을 유지하도록 한 아스팔트 혼합물을 개발하고 이에 대한 융빙(설) 특성 및 아스팔트 포장으로서의 역학적 특성을 알아보는데 있다. 결합재로는 AC 60-80이 사용되었고, 본 연구에서 개발된 융설제와 CRM이 건식 혼합방법으로 사용되었다. 기존 포장위에 박층포장 용도로 사용하기 위한 샌드 융설 아스팔트 혼합물과 표층용 혼합물과 동일 용도인 13mm 밀입도 융설 아스팔트 혼합물을 개발하였다. 아스팔트 혼합물의 특성을 평가하기 위하여 마샬안정도와 간접인장강도, 결빙 및 융빙실험, 용출수의 수질분석 실험을 수행하였다 융설 아스팔트 혼합물은 포장용 혼합물로서의 충분한 강도 및 우수한 융설 기능도 가지고 있는 것으로 나타났으며, 용출수의 중성화를 유도하여 도로 주변의 식생에도 악영향을 미치지 않을 것으로 판단된다.

  • PDF

Synthesis and Thermal Properties of Poly(cyclohexylene dimethylene terephthalate-co-butylene terephthalate

  • Lee, Sang-Won;Wansoo Huh;Hong, Yoo-Seok;Lee, Kyung-Mi
    • Macromolecular Research
    • /
    • 제8권6호
    • /
    • pp.261-267
    • /
    • 2000
  • It is well known that poly(cyclohexylene dimethylene terephthalate) (PCT) is used as the engineering plastics with high melting temperature and fast crystallization rate compared with poly(butylene terephthalate)(PBT). However, poor thermal stability of PCT has limited its practical application due to the drastic decrease of molecular weight during the processing temperature. In order to improve the thermal stability of PCT homopolymer, the copolymer of PCT and PBT was synthesized and the thermal properties of the copolymer have been studied. P(CT/BT) copolymer was obtained by condensation polymerization of DMT, CHDM, and 1,4-butanediol. The chemical structure and composition of the copolymer was investigated by FTIR and NMR analysis. The thermal behavior of copolymer was studied using DSC and it was found that the crystallization-melting behavior of the copolymer was observed for the whole composition range. TGA analysis exhibited that P(CT/BT) copolymer is more stable at the initial stage of thermal decomposition compared with PCT and PBT homopolymers.

  • PDF

UBM이 단면 증착된 Si-Wafer에 대한 Pb-free 솔더의 무플럭스 젖음 특성 (The Fluxless Wetting Properties of UBM-Coated Si-Wafer to the Pb-Free Solders)

  • 홍순민;박재용;김문일;정재필;강춘식
    • Journal of Welding and Joining
    • /
    • 제18권6호
    • /
    • pp.74-82
    • /
    • 2000
  • The fluxless wetting properties of UBM-coated Si-wafer to the binary lead-free solders(Sn-Ag, Sn-Sb, Sjn-In, Sn0Bi) were estimated by wetting balance method. With the new wettability indices from the wetting curves of one side coated specimen, the wetting property estimation of UBM-coated Si-wafer was possible. For UBM of Si-chip, Au/Cu/Cr UBm was better than au/Ni/TI in the point of wetting time/ At general reflow process temperature, the wettability of high melting point solders(Sn-Sb, Sn-Ag) was better than that of low melting point one(Sn-Bi, Sn-In). The contact angle of the one side coated Si-plate to the solder could be calculated from the force balance equation by measuring the static state force and the tilt angle.

  • PDF

Thermoelectric Properties of Vacuum Hot-pressed $Ba_8Al_{16}Si_{30}$ Clathlate

  • Lee, Joo-Ho;Lee, Jung-Il;Kim, Young-Ho;Kim, Il-Ho;Jang, Kyung-Wook;Ur, Soon-Chul
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1198-1199
    • /
    • 2006
  • Type I clathrate $Ba_8Al_{16}Si_{30}$ was produced by arc melting and hot pressing and thermoelectric properties were investigated. Negative Seebeck coefficient at all temperatures measured, which means that the majority carriers are electrons. Electrical conductivity decreased by increasing temperature and thermal conductivity was 0.012 W/cmK at room temperature and dimensionless thermoelectric figure of merit (ZT) was 0.01 at 873K.

  • PDF

Properties of Polysiloxane Coated Borosilicate Lining Blocks

  • Song, Jeongho;Song, Ohsung
    • 한국세라믹학회지
    • /
    • 제54권6호
    • /
    • pp.525-529
    • /
    • 2017
  • To improve the thermal resistance of a porous borosilicate lining block, we prepared and applied polysiloxane-fumed silica-ethanol slurry on top of the block and fired the coating layer using a torch for 5 minutes at $800^{\circ}C$. We conducted magnified characterizations using a microscope and XRD analysis to observe phase transformations, and TGA-DTA analysis to determine the thermal resistance. Thermal characterizations showed improved heat resistance with relatively high polysiloxane content slurry. Cross-sectional optical microscope observation showed less melting near the surface and decreased pore formation area with higher polysiloxane content slurry. XRD analysis revealed that the block and coating layer were amorphous phases. TGA-DTA analysis showed an endothermic reaction at around $550^{\circ}C$ as the polysiloxane in the coating layer reacted to form SiOC. Therefore, coating polysiloxane on a borosilicate block contributes to preventing the melting of the block at temperatures above $800^{\circ}C$.

High Optical Anisotropy Nematic Single Compounds and Mixtures

  • Gauza, Sebastian;Kula, Przemyslaw;Dabrowski, Roman;Sasnouski, Genadz;Lapanik, Valeri
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권1호
    • /
    • pp.2-5
    • /
    • 2012
  • We have designed, synthesized, and evaluated the physical properties of some high birefringence (${\Delta}n$) isothiocyanato biphenyl-bistolane liquid crystals. These compounds exhibit ${\Delta}n^-$ 0.4-0.7 at room temperature and wavelength $\lambda$=633 nm. Laterally substituted short alkyl chains and fluorine atom eliminate smectic phase and lower the melting temperature. The moderate melting temperature and very high clearing temperature make those compounds attractive for eutectic mixture formulation. Several mixtures based on those compounds were formulated and its physical properties evaluated.

용출형 극세사와 저온 융착사를 이용한 인테리어 직물의 기계적 물성 개선 (Improvement of mechanical properties of interior fabric using soluble micro-fiber and low melting PET)

  • 권윤정;안영무
    • 패션비즈니스
    • /
    • 제13권1호
    • /
    • pp.82-90
    • /
    • 2009
  • This research was made to manufacture the fabric for interior uses by spinning a low melting mono 4 denier PET staple fiber with a soluble 1.4 denier fine PET fiber. The blended yarn has a thickness ranging from 10's to 14's, and the soluble PET fine fiber was dissolved to make a pore in the polymer. Thereby a snap property was decreased and a resilience property was improved to be suitable for a functional synthetic leather. In order to attain the optimum condition, a mechanical property according to fineness, and mixing ratio of low melting polymer, warp density, weft density and blending ratio, and a heat contraction ratio according to blending ratio were experimented. The warp density, 220 T/inch of fine denier PET and the weft density, 64 T/inch of thick denier PET were generated to 4/4 both twill weave fabric having constant tensile property and thickness.

아크용해법에 의한 Ti-Cr-Nb합금의 제조와 수소와 특성 평가 (Evaluation of Hydrogenation Properties on Ti-Cr-Nb Alloys Manufactured by Arc Melting)

  • 이영근;홍태환
    • 한국수소및신에너지학회논문집
    • /
    • 제19권6호
    • /
    • pp.482-489
    • /
    • 2008
  • Ti-Cr alloys consist of BCC solid solution, C36, C14 and C15 Laves phase at high temperature. Among others, the BCC solid solution phase was reported to have a high hydrogen storage capacity. However, activation, wide range of hysteresis at hydrogenation/dehydrogenation, and degradation of hydrogen capacity due to hydriding/dehydriding cycles must be improved for its application. In this study, to improve such problems, we added a Nb. For attaining target materials, Ti-10Cr-xNb(x=1, 3, 5wt.%) specimens were prepared by arc melting. The arc melting process was carried out under argon atmosphere. As-received specimens were characterized using XRD(X-ray diffraction), SEM(Scanning Electron Microscopy) with EDX(Energy Dispersive X-ray) and TG/DSC(Thermo Gravimetric Analysis/Differential Scanning Calorimetry). In order to examine hydrogenation behavior, the PCI(pressure-Composition-Isotherm) was performed at 293, 323, 373 and 423K.

Ti-6Al-4V 합금에서 상 변화를 고려한 Selective Laser Melting 프로세스 연구 (A Study on Selective Laser Melting Process Considering Phase Transformation for Ti-6Al-4V)

  • 송성일;박주헌;진병주;이경돈
    • 한국주조공학회지
    • /
    • 제39권6호
    • /
    • pp.110-115
    • /
    • 2019
  • Recently, various studies have been conducted on additive manufacturing technology developed using metal materials. In this study, a numerical analysis was introduced to analyze the effects of the thermal deformation and residual stress which arise during the SLM (selective laser melting) manufacturing process. A phase-transformation mechanism is implemented with the use of the Ti-6Al-4V material, in which a solid-state phase transformation (SSPT) can be induced during a numerical analysis. In this case, the phase of the Ti-6Al-4V material changes from a powder to a solid state and then to the Martensite phase in sequence during heating and cooling steps. The numerical analysis during the SLM process was verified by comparing the results of tensile tests with those from the numerical analysis based on the SSPT material properties.

저융점을 가진 Core 물질을 이용한 내구성 Microcapsule 제조 기술 (The Study of Encapsulation Technique for Microcapsule Using Core Materials with Low Melting Point)

  • 노근에;강유진;김상헌
    • 한국응용과학기술학회지
    • /
    • 제18권4호
    • /
    • pp.273-284
    • /
    • 2001
  • A series of microcapsule were synthesized by using several PCM(Phase Change Material) as a core material and gelatin/arabic gum, melamine/formaldehyde as a shell material. Coacervation technique and in situ polymerization were adopted in synthesizing microcapsules. In the microencapsulation by coacervation, tetradecane and octadecane were used as core materials. In the microencapsulation by situ polymerization tetradecane, pentadecane, hexadecane, heptadecane, octadecane, and nonadecane were used as core material. The synthesized microcapsule was examined to observe the shape of the microcapsule. The particle size analysis was performed by particle size analyzer. The thermal properties(e.g. melting point, heat of melting, crystallization temperature, heat of crystallization, differences between melting point and crystallization temperature) were obtained by DSC(Differential Scanning Calorimeter). The stirring rate effect was investigated during the microencapsulation. It was found that with increasing the stirring rate much smaller microcapule was produced. However, this did not necessarily lead to formation of spherical microcapsule.