• Title/Summary/Keyword: Melt infiltration-growth

Search Result 12, Processing Time 0.021 seconds

$\beta$-SiC Formation Mechanisms in Si Melt-C-SiC System (용융 Si-C-SiC계에서 $\beta$-SiC 생성기구)

  • 서기식;박상환;송휴섭
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.6
    • /
    • pp.655-661
    • /
    • 1999
  • ${\beta}$-SiC formation mechanism in Si melt-C-SiC system with varying in size of carbon source was investigated. A continuous reaction sintering process using Si melt infiltration method was adopted to control the reaction sintering time effectively. It was found that ${\beta}$-SiC formation mechanism in Si melt-C-SiC system was directly affected by the size of carbon source. In the Si melt-C-SiC system with large carbon source ${\beta}$-SiC formation mechanism could be divided into two stages depending on the reaction sintering time: in early stage of reaction sintering carbon dissolution in Si melt and precipitation of ${\beta}$-SiC was occurred preferentially and then SIC nucleation and growth was controlled by diffusion of carbon throughy the ${\beta}$-SiC layer formed on graphite particle. Furthmore a dissolution rate of graphite particles in Si melt could be accelerated by the infiltration of Si melt through basal plane of graphite crystalline.

  • PDF

Comparative Study on the Fabrication of Single Grain YBCO Bulk Superconductors using Liquid Infiltration and Conventional Melt Growth Processes (단결정 YBCO 벌크 초전도체 제조에 대한 액상침투법과 고전적 용융공정의 비교연구)

  • Mahmood, Asif;Jun, Byung-Hyuk;Kim, Chan-Joong
    • Progress in Superconductivity
    • /
    • v.11 no.1
    • /
    • pp.42-46
    • /
    • 2009
  • With an aim of comparison, single grain Y-Ba-Cu-O (YBCO) bulk superconductors were fabricated using a liquid infiltration growth (LIG) process and a conventional melt growth (MTG) process with top seeding. The MTG process uses an $YBa_2Cu_3O_{7-x}$(Y123) powder as a precursor, while the LIG process uses $Y_2BaCuO_5(Y211)/Ba_3Cu_5O_8(Y035)$ pre-forms. The growth of a single Y123 domain on the top seed was successful in the both processes. Different feature between the two processes is the interior microstructure regarding the critical current density ($J_c$). The LIG-processed YBCO sample showed a lower porosity, more uniform distribution of Y211 particles and the enhanced Y211 refinement compared to the conventional MTG process. The $J_c$ improvement in the LIG process is attributed to the dispersion of finer Y211 particles as well as lower porosity within the Y123 superconducting matrix.

  • PDF

Fabrication and mechanical properties of $Al_2O_3/AL$ composites by reactive melt infiltration (반응용융 침투법에 의한 $Al_2O_3/AL$복합재료의 제조 및 기계적 특성 평가)

  • ;;;T. Watari
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.4
    • /
    • pp.610-618
    • /
    • 1997
  • $Al_2O_3$/Al composite was produced by the infiltration of molten Al Into $Al_2$O$_3$ preform at 900-$1200^{\circ}C$, The process was accelerated by spreading borosilicate glass powder onto the interface between Al powder compact and $Al_2O_3$ preform. Melt infiltration initialed after incubation period, and the growth of infiltration was observed to be linearly propotional with time. The major components of the composite are $Al_2O_3$ and Al with a trace of Si which is remained from borosilicate, the reaction accelerator. Relative density of the composite increased with the particle size of $Al_2O_3$ but decreased with infiltration temperature. As infiltration temperature increases from room to $950^{\circ}C$ higher strength and fracture toughness were obtained.

  • PDF

Mechanical and optical properties of alumina/zirconia-glass dental crown composites (인공치관용 알루미나/지르코니아-유리 복합체의 기계적 및 광학적 특성)

  • 이득용;장주웅
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.3
    • /
    • pp.99-104
    • /
    • 2003
  • Alumina/zirconia-glass composites prepared by melt-infiltration were investigated to evaluate the influence of zirconia addition on mechanical and optical properties of the composites and glass penetration kinetics. The infiltration distance was parabolic with respect to time as described by the Washburn equation and the penetration rate constant, K, decreased due to the reduction In pore size as the amount of zirconia rose. The zirconia addition increased lightness ($L^*$) but reduced K, transmittance and color sharpness ($C^*$) It can be concluded that the zirconia addition was not effective to the mechanical properties of the composites due to the increase in porosity even though the toughness of the composites increased when zirconia was added up to 15 wt%.

Direct fabrication of a large grain YBCO bulk superconductor without intermediate grinding step

  • Hong, Yi-Seul;Kim, Chan-Joong;Lee, Hee-Gyoun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.3
    • /
    • pp.27-31
    • /
    • 2019
  • Large grain YBCO bulk superconductors are fabricated by the top-seeded melt growth (TSMG) or top-seeded infiltration growth (TSIG) method. Both growth methods use at least one of $YBa_2Cu_3O_{7-{\delta}}$, $Y_2BaCuO_5$, $BaCuO_3$ pre-reacted precursor powders. However, the synthesis of the pre-reacted powders includes multiple calcination runs which are cost-bearing and time-consuming. In this work, we report the successful growth of single-domain YBCO bulk superconductors directly by using the powder compact that has been pressed from the mixture of $Y_2O_3$, $BaCuO_3$ and CuO powders without any intermediate grinding step. Single-domain YBCO bulk superconductor has been also prepared by using $Y_2O_3$, $BaO_2$ and CuO powders without intermediate grinding step. Investigations on the trapped magnetic field and microstructure of the melt-processed specimen show that the elimination of the repeated processes of calcinations and pulverization has hardly affected on the crystal growth and the magnetic properties of the grown YBCO bulk superconductors. However, it is thought that the presence of residual carbon affects on the size of Y211 particles in melt-processed YBCO bulk superconductor.

Microstructure and Mechanical Properties of Infiltrated Zirconia-Mullite Composite (침투된 지르코니아-뮬라이트 복합체의 미세구조 및 기계적 성질)

  • 손영권;이윤복;김영우;오기동;박홍채
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.174-180
    • /
    • 2000
  • Y-TZP/mullite composites were prepared by the infiltration of Y-TZP precursor into partially reaction-sintered mullite. The addition of Y-TZP(~7.2 wt%) increased the bend strength(207 MPa), fracture toughness(4.6MPa.m1/2) and Vickers microhardness(853kg/$\textrm{mm}^2$) of the uninfiltrated mullite sintered at 162$0^{\circ}C$ for 10h by more than 75, 70 and 105%, respectively. Residual alumina-rich glass was observed at a mullite/mullite junction, due to the mullitization reaction of silica melt with crystalline $\alpha$-Al2O3 during a final sintering. Although ZrO2 inclusions improved the final sintered density of mullite they did not effectively prevent its grain growth.

  • PDF

Microstructure and Mechanical Properties of Reaction-Bonded Sintering TiC-Based Composite Prepared by Ni-Ti Metal Infiltration (Ni/Ti 금속침투에 의한 반응결합소결 TiC계 복합체의 미세구조 및 기계적 특성)

  • 한인섭;우상국;김홍수;양준환;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.9
    • /
    • pp.995-1002
    • /
    • 1996
  • The TiC-(Ni/Ti) composites were prepared by reaction bonding between TiC preforms and the melted mixture of Ni/Ti metal the atomic ratio of which were the ranges of 0.3 to 3. And their microstructures phase composi-tions and mechanical properties were investigated. During reaction bonding Ni/Ti metal mixture had a good wettability an permeability with TiC preforms and pore-free and fully dense sintered bodies were fabricated. TiC particle shape changed from spherical to angular platelet-like and grain size was grown with Ni/Ti atomic ratio increasing from 0.3 to 1. whereas grain growth of TiC particle was restrained and its shape changed gain from angular platelet-like to spherical when Ni/Ti atomic ratio was more than 2. Maximum bending strength and fracture toughness were obtained at the Ni/Ti atomic ratio being 1 their values were 582 MPa and 11.1 MPa.m1/2 respectively.

  • PDF

Effect of Glass Composition on the Properties of Glass-Infiltrated Alumina (II) : Effect of La2O3 (유리침투 알루미나 복합체의 물성에 미치는 유리조성의 영향 (II) : La2O3의 영향)

  • Lee, Jae-Hee;Kim, Cheol-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.12 s.271
    • /
    • pp.939-945
    • /
    • 2004
  • Glasses of $SiO_2-B_{2}O_3-Al_{2}O_3-CaO-La_{2}O_3$ with various amounts of $La_{2}O_3$ were infiltrated into a porous alumina to make an alumina-glass composite. The infiltration characterization and bending strength of the composite were examined in terms of glass composition. $La_{2}O_3$ in the glass decreased the high temperature viscosity and this enhanced the wetting behaviour of this glass to alumina, and made glass infiltration easier. The infiltrated glass dissolved the alumina skeleton, and $Al_{2}O_3$ component in the glass melt reprecipitated on the alumina. The grain growth occurred to a specific crystal direction. The glass containing $20mole\%$ of $La_{2}O_3$ was crystallized after infiltration, and this enhanced the bending strength of the composite.