• Title/Summary/Keyword: Melt Spinning

Search Result 183, Processing Time 0.025 seconds

Studies on Melt Spinning of PET Hollow Fibers

  • O Tae-Hwan;Lee Mu-Seok;Kim Sang-Yong;Sim Hyeon-Ju
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.04a
    • /
    • pp.111-115
    • /
    • 1998
  • Fiber spinning is a continuous deformation process by which material is converted into a fiber. The melt spinning process was analyzed mainly by employing an asymptotic method of the so-called thin filament equations which formulates dynamics of spinning process by averaging over the cross-section of filament the set of fundamental equations. The method gives the approximate results for commonly used circular fiber spinning.(omitted)

  • PDF

Fabrication of mineral fiber via melt spinning method from blast furnace slag

  • Wang, Xiao-Song;Hur, Bo-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.4
    • /
    • pp.158-163
    • /
    • 2014
  • Mineral fiber, or be called mineral wool when it assembles in large amounts, is a kind of wide applied man-made material with excellent thermal and acoustic insulation properties. In this work, mineral fiber was produced via melt spinning method by using iron blast furnace slag as raw material. Two critical experimental parameters for fabrication were investigated: melt pouring temperature and rotating speed of spinning wheels. The mineral fiber produced under the condition of melt pouring temperature $1500^{\circ}C$ and spinning speed 4000 rpm, showed the smoother surface and most quality, while the others had rough surfaces or with heavy shots. In general, mineral fibers with the size in the range of $12{\sim}49{\mu}m$ in diameter and 8~130 mm in length can be fabricated by this method, and the production rate is more than 34 wt.%, which could be up to 57 wt.% at maximum.

Study on Spinning Behavior and Structure of Polyester Fibers by the Melt-type Electrospinning Method (용융형 전기방사법에 의한 폴리에스테르섬유의 방사거동과 구조에 관한 연구)

  • Lee, Jin-Ah;Lim, Min-Soo;Joo, Chang-Whan
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.273-276
    • /
    • 2002
  • The fiber formation of conventional melt spinning is extruded by forcing the polymer melt through a spinneret by pumping mechanism usually involving high pressure. This is followed by cooling, solidification and appropriate drawing of the fiber. The spinning process is broadly applicable to polyolefin, polyamide, polyester and indeed the whole range of fibers forming thermoplastic polymers. (omitted)

  • PDF

Preparation and Physical Properties of Biodegradable High Performance PLA Fiber using Process Parameters (용융방사에 의한 생분해성 고강도 PLA 섬유 제조 공정 상 주요 공정 변수에 관한 연구)

  • Jeung, Woo Chang;Kim, Sam Soo;Lee, Sang Oh;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.34 no.3
    • /
    • pp.197-206
    • /
    • 2022
  • The purpose of this study was to confirm the optimal spinning conditions for PLA (Polylactic acid) as a fiber forming polymer. According to the melt spinning test results of PLA, the optimal spinning temperature was 258℃. However, it needs to note that relatively high pack pressure was required for spinning at 258℃. At an elevated temperature, 262℃, mono filament was broken easily due to hydrolysis of PLA at a higher temperature. In case of fiber strength, it was confirmed that the draw ratios of 2.7 to 3.3 were optimal for maximum strength of melt spun PLA. Above the draw ratio, 3.3, the strength of the PLA fibers was lowered. It was presumed that cleavage of the PLA polymer chain over maximum elongation. The heat setting temperature of GR (Godet roller) showed that the maximum strength of the PLA fibers was revealed around 100℃. The degree of crystallinity and the strength of the PLA fibers were decreased above 100℃. The optimal take-up speed (Spinning speed) was around 4,000m/min. Thermal analysis of PLA showed 170℃ and 57℃ as Tm (melting temperature) and Tg (glass transition temperature), respectively.

Analysis on Po1y(lactic acid) Melt Spinning Dynamics (Poly(lactic acid) 용융방사공정의 동역학 해석)

  • Oh, Tae-Hwan;Kim, Seong-Cheol
    • Clean Technology
    • /
    • v.15 no.4
    • /
    • pp.245-252
    • /
    • 2009
  • Profiles development of melt spinning process of poly(lactic acid) (PLA) was simulated via a numerical method and the radial temperature distribution was calculated using finite difference method. The spinning speed ranged from 1 km/min to 5 km/min was analyzed and the effect of spinning conditions on the radial temperature distribution was investigated. At low spinning speed, the difference between PLA and poly(ethylene terephthalate) (PET) was relatively small. As the spinning speed increased, the difference in velocity profile became prominent. PLA showed a slower spinning speed than PET and solidified more slowly. The temperature difference between the core and surface of the PLA filament reached 4.6 K, which was less than that of PET filament with a difference of 10.4 K. The radial temperature difference increased with increasing the cooling-air velocity and the spinning temperature.

Effects of Nucleating Agents on Preparation of Polypropylene Hollow Fiber Membranes by Melt Spinning Process

  • Kim, Bong-Tae;Kigook Song;Kim, Sung-Soo
    • Macromolecular Research
    • /
    • v.10 no.2
    • /
    • pp.127-134
    • /
    • 2002
  • Microporous polypropylene hollow fiber membrane was fabricated from isotactic polypropylene-soybean oil system by melt spinning process. Addition of nucleating agent accelerated the crystallization rate and elevated the crystallization temperature. Nucleating agent increased the number of nuclei and spherulites, which offered more inter-spherulitic amorphous sites for stretching. Benzoic acid, adipic acid, and dibenzylidene sorbitol were selected as nucleating agents, and their characteristics and effects were investigated by thermal and optical analyses. Spherulite growth and micropore formation characteristics were correlated with the kind of nucleating agent. Benzoic acid and adipic acid showed the remarkable nucleating effect, while dibenzylidene sorbitol was less effective than those. Nucleating agents also helped the sample have uniform microporous structure. Increase of nucleating agent composition enhanced the nucleation effect to some extent. Nucleating agents played very important roles in enhancing the membrane porosity and water flux.

Thermoelectric Properties of N-type 90% $Bi_2Te_3$+10% $Bi_2Se_3$ Thermoelectric Materials Produced by Melt spinning method and Sintering (Melt spinning법에 의한 n형 90% $Bi_2Te_3$+10% $Bi_2Se_3$ 열전소결체의 열전특성)

  • 김익수
    • Journal of Powder Materials
    • /
    • v.5 no.1
    • /
    • pp.50-56
    • /
    • 1998
  • A new process using rapid solidification (melt spinning method) followed by pressing and sintering was investigated to produce the n-type thermoelectric ribbons of 90% $Bi_2Te_3$+10% $Bi_2Se_3$ doped with $CdCl_2$. Quenched ribbons are very brittle and consisted of homogeneous $Bi_2Te_3-Bi_2Se_3$ pseudo-binary solid solutions. Property variations of the materials was investigated as a function of variables, such as dopant $CdCl_2$ quantity and sintering temperature. When the process parameters were optimized, the maximum figure of merit was $2.146{\times}10^{-3}K^{-1}$.

  • PDF

Effect of Processing Factors on the Properties of Melt-blown PP/Ba-ferrite Composite Fabrics (Melt-blown 방사에 의한 PP/Ba-ferrite 복합 부직포 제조시의 공정인자가 부직포의 특성에 미치는 영향)

  • Han, Jong-Hun;Lee, Dong-Jin;Lim, Hyung Mi;Lee, Seung-Ho;Oh, Sung Geoun
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.267-273
    • /
    • 2006
  • We have prepared PP/Ba-ferrite composite fabrics by a melt-blown spinning method and investigated the relationship between the properties of PP/Ba-ferrite composite fabrics and melt-blown processing factors. A PP composite containing Ba-ferrite as a magnetic particulate filler was prepared in the form of pellet from PP resin and Ba-ferrite powder by melt compounding using a single extruder. Screw turning force (rpm), DCD (die-to-collector distance), and Ba-ferrite content were changed. We measured diameters of fiber, mechanical, thermal, and magnetic properties for the composited PP fabrics. The elongation was increased and a fiber diameter and tensile strength were decreased as the spinning distance increased or screw turning force decreased. The crystallinity was increased with increasing spinning distance according to XRD. It was assumed that the orientation of crystalline domain in the neat PP without ferrite was increased by drawing in mechanical direction, however, the orientation in the PP composite was decreased according to XRD analysis. We measured a magnetic property of PP nonwoven fabric containing Ba-ferrite powder. A coercive force, maximum magnetization, and residual magnetization are reduced with the spinning distance. According to the result of TGA measurement, the heat resistance was increased with the Ba-ferrite powder content and with decreasing the spinning distance.

Preparation of Polyethylene Micro-fibers by High Speed Centrifugal Melt Spinning (초고속 용융 원심방사를 이용한 폴리에틸렌 마이크론 섬유의 제조)

  • Yang, Seong Baek;Lee, Jungeon;Ji, Byung Chul;Joo, Nam Sik;Yeum, Jeong Hyun
    • Textile Coloration and Finishing
    • /
    • v.32 no.4
    • /
    • pp.239-244
    • /
    • 2020
  • Polyethylene (PE) micro-fiber have been prepared at different hot air temperature (60, 80 and 100 ℃) and different pressure (20, 40, 60 and 80 kPa) by melt centrifugal spinning technique. The parameters of melting centrifugal spinning including polymer contents, rotational velocity, temperature of hot air and pressure were optimized for the fabrication process. The study showed that 8000 rpm rotational velocity, 80 ℃ heated hot air and 40 kPa air pressure are the best condition to obtain uniform and strong PE fiber. The prepared PE fibers were analyzed by field emission scanning electron microscope and universal testing machine and found that fibers with reduced diameter and improved tensile strength are obtained at hot air condition.