• Title/Summary/Keyword: Melatonin

Search Result 276, Processing Time 0.025 seconds

Mitochondrial oxidative damage by co-exposure to bisphenol A and acetaminophen in rat testes and its amelioration by melatonin

  • Hina Rashid;Mohammad Suhail Akhter;Saeed Alshahrani;Marwa Qadri;Yousra Nomier;Maryam Sageer;Andleeb Khan;Mohammad F. Alam;Tarique Anwer;Razan Ayoub;Rana J. H. Bahkali
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.50 no.1
    • /
    • pp.26-33
    • /
    • 2023
  • Objective: Human exposure to multiple xenobiotics, over various developmental windows, results in adverse health effects arising from these concomitant exposures. Humans are widely exposed to bisphenol A, and acetaminophen is the most commonly used over-the-counter drug worldwide. Bisphenol A is a well-recognized male reproductive toxicant, and increasing evidence suggests that acetaminophen is also detrimental to the male reproductive system. The recent recognition of male reproductive system dysfunction in conditions of suboptimal reproductive outcomes makes it crucial to investigate the contributions of toxicant exposures to infertility and sub-fertility. We aimed to identify toxicity in the male reproductive system at the mitochondrial level in response to co-exposure to bisphenol A and acetaminophen, and we investigated whether melatonin ameliorated this toxicity. Methods: Male Wistar rats were divided into six groups (n=10 each): a control group and groups that received melatonin, bisphenol A, acetaminophen, bisphenol A and acetaminophen, and bisphenol A and acetaminophen with melatonin treatment. Results: Significantly higher lipid peroxidation was observed in the testicular mitochondria and sperm in the treatment groups than in the control group. Levels of glutathione and the activities of catalase, glutathione peroxidase, glutathione reductase, and manganese superoxide dismutase decreased significantly in response to the toxicant treatments. Likewise, the toxicant treatments significantly decreased the sperm count and motility, while significantly increasing sperm mortality. Melatonin mitigated the adverse effects of bisphenol A and acetaminophen. Conclusion: Co-exposure to bisphenol A and acetaminophen elevated oxidative stress in the testicular mitochondria, and this effect was alleviated by melatonin.

Effects of Melatonin on Preventing Postoperative Intraperitoneal Adhesion Formation in Rats (Rat에서 술후 복강 유착방지에 대한 melatonin의 효과)

  • Lee, Seung-Chan;Kim, Jung-Eun;Kwon, Young-Sam;Jang, Kwang-Ho
    • Journal of Veterinary Clinics
    • /
    • v.23 no.3
    • /
    • pp.230-235
    • /
    • 2006
  • This study was performed in rats to find the minimum dose of melatonin that can effectively prevent the formation of postoperative intraperitoneal adhesions. Forty-two Sprague Dawley male rats were divided into six groups consisting of 7 rats, respectively. After celiotomy, five abrasions of $0.5{\times}1cm$ area were made on the antimesenteric serosal surface of the colon with a scalpel blade. The abdominal cavity was filled with 1 ml of solution containing 1 mg/kg(Mel 1), 3 mg/kg(Mel 3), 10 mg/kg(Mel 10), 30 mg/kg(Mel 30) and 5% ethanol solution(sham) through the catheter, using a sterile syringe before abdominal closure. Control group was given no adjuvant. The locations and values of adhesion were assessed through the second operation on the 14th day after the first operation. The adhesions were located on serosa to mesentery(54 of 210, 25.7%), serosa to serosa(44 of 210, 21%), serosa to omentum (12 of 210, 5.7%) and serosa to parietal peritoneum(0 of 210, 0%). The incidences of adhesion in Control, Sham, Mel 1, Mel 3, Mel 10 and Mel 30 were 68.6%, 91.4%, 57.1%, 60.1%, 17.1% and 20%, respectively. The values of adhesion separation in Mel 10 and Mel 30 group were lower than those in other groups. However, there was no significant(p<0.05) between Mel 10 and Mel 30 group. This study showed that 10 mg/kg of melatonin were effective in reducing the intraperitoneal adhesion.

The Change of Transforming Growth Factor ${\beta}1(TGF-{\beta}1)$ Expression by Melatonin in Irradiated Lung (방사선조사된 폐에서 Melatonin에 의한 TGF-${\beta}1$ 발현의 변화)

  • Jang, Seong-Soon;Choi, Ihl-Bohng
    • Radiation Oncology Journal
    • /
    • v.23 no.3
    • /
    • pp.161-168
    • /
    • 2005
  • Purpose: The changed expressions of $TGF-{\beta}1$, as a key cytokine in the fibrotic process, due to melatonin with potent antioxidative effects, were investigated in the irradiated lung using fibrosis-sensitive C57BL/6 mice. Materials and Methods: Female C57BL/6 mice were divided into control irradiation-only, and melatonin (300 mg/kg i.p. 1 hr before irradiation) pretreatment groups. The thoraces of the mice were irradiated with a single dose of 12 Gy. The mRNA expressions of $TGF-{\beta}1$ in the lung tissue 2 and 4 weeks after irradiation were quantified using semiquantitive RT-PCR, and the cellular origin and expression levels of $TGF-{\beta}1$ protein were identified using immunohistochemical staining. Results: The relative mRNA expression levels in the irradiation-only and melatonin pretreatment groups 2 and 4 weeks after irradiation were 1.92- and 1.80-fold (p=0.064) and 2.38- and 1.94-fold (p=0.004) Increased, respectively compared to those in the control group. increased expressions of $TGF-{\beta}1$ protein were prominently detected in regions of histopathologicai radiation injury, with alveolar macrophages and septal epithelial cells serving as important sources of $TGF-{\beta}1$ expression. At 2 and 4 weeks after irradiation, the expression levels of protein were $15.8\%\;vs.\;16.9\%$ (p=0.565) and $36.1\%\;vs.\;25.7\%$ (p=0.009), respectively. Conclusion: The mRNA and protein expressions of $TGF-{\beta}1$ in the lung tissue following thoracic irradiation with 12 Gy were significantly decreased by melatonin pretreatment at 4 weeks. These results indicate that melatonin may have a possible application as an antifibrotic agent in radiation-induced lung injury.

The effect of melatonin on cardio fibrosis in juvenile rats with pressure overload and deregulation of HDACs

  • Wu, Yao;Si, Feifei;Luo, Li;Jing, Fengchuan;Jiang, Kunfeng;Zhou, Jiwei;Yi, Qijian
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.6
    • /
    • pp.607-616
    • /
    • 2018
  • The effect of melatonin on juveniles with cardio fibrosis is poorly understood. We investigated whether HDACs participate in the anti-fibrotic processes regulated by melatonin during hypertrophic remodeling. Abdominal aortic constriction (AAC) was employed in juvenile rats resulting in pressure overload-induced ventricular hypertrophy and melatonin was subsequently decreased via continuous light exposure for 5 weeks after surgery. AAC rats displayed an increased cross-sectional area of myocardial fibers and significantly elevated collagen deposition compared to sham-operated rats, as measured by HE and Masson Trichrome staining. Continuous light exposure following surgery exacerbated the increase in the cross-sectional area of myocardial fibers. The expression of HDAC1, HDAC2, HDAC3, HDAC4 and HDAC6 genes were all significantly enhanced in AAC rats with light exposure relative to the other rats. Moreover, the protein level of $TNF-{\alpha}$ was also upregulated in the AAC light exposure groups when compared with the sham. However, Smad4 protein expression was unchanged in the juveniles' hearts. In contrast, beginning 5 weeks after the operation, the AAC rats were treated with melatonin (10 mg/kg, intraperitoneal injection every evening) or vehicle 4 weeks, and sham rats were given vehicle. The changes in the histological measures of cardio fibrosis and the gene expressions of HDAC1, HDAC2, HDAC3, HDAC4 and HDAC6 were attenuated by melatonin administration. The results reveal that melatonin plays a role in the development of cardio fibrosis and the expression of HDAC1, HDAC2, HDAC3, HDAC4 and HDAC6 in cardiomyocytes.

Lack of Association of the NPAS2 Gene Ala394Thr Polymorphism (rs2305160:G>A) with Risk of Chronic Lymphocytic Leukemia

  • Rana, Sobia;Shahid, Adeela;Ullah, Hafeez;Mahmood, Saqib
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7169-7174
    • /
    • 2014
  • Background: NPAS2 is a product of the circadian clock gene. It acts as a putative tumor suppressor by playing an important role in DNA damage responses, cell cycle control and apoptosis. Chronic lymphocytic leukemia (CLL) appears to be an apoptosis related disorder and alteration in the NPAS2 gene might therefore be directly involved in the etiology of CLL. Here, the Ala394Thr polymorphism (rs2305160:G>A) in the NPAS2 gene was genotyped and melatonin concentrations were measured in a total of seventy-four individuals, including thirty-seven CLL cases and an equal number of age- and sex-matched healthy controls in order to examine the effect of NPAS2 polymorphism and melatonin concentrations on CLL risk in a Pakistani population. Materials and Methods: Genotyping of rs2305160:G>A polymorphism at NPAS2 locus was carried out by amplification refractory mutation system-polymerase chain reaction (ARMS-PCR). Melatonin concentrations were determined by enzyme linked immunosorbent assay (ELISA). Statistical analysis was performed using Statistical Package for Social Sciences software. Results: Our results demonstrated no association of the variant Thr genotypes (Ala/Thr and Thr/Thr) with risk of CLL. Similarly, no association of rs2305160 with CLL was observed in either females or males after stratification of study population on a gender basis. Moreover, when the subjects with CLL were further stratified into shift-workers and non-shift-workers, no association of rs2305160 with CLL was seen in either case. However, significantly low serum melatonin levels were observed in CLL patients as compared to healthy subjects (p<0.05). Also, lower melatonin levels were seen in shift-workers as compared to non-shift-workers (p<0.05). There was no significant difference (p>0.05) in the melatonin levels across NPAS2 genotypes in all subjects, subjects with CLL who were either shift workers or non-shift-workers. General Linear Model (GLM) univariate analysis revealed no significant association (p>0.05) of the rs2305160 polymorphism of the NPAS2 gene with melatonin levels in any of the groups. Conclusions: While low melatonin levels and shift-work can be considered as one of the risk factors for CLL, the NPAS2 rs2305160 polymorphism does not appear to have any association with risk of CLL in our Pakistani population.

Endotoxin-induced inflammation disturbs melatonin secretion in ewe

  • Herman, Andrzej Przemyslaw;Wojtulewicz, Karolina;Bochenek, Joanna;Krawczynska, Agata;Antushevich, Hanna;Pawlina, Bartosz;Zielinska-Gorska, Marlena;Herman, Anna;Romanowicz, Katarzyna;Tomaszewska-Zaremba, Dorota
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.12
    • /
    • pp.1784-1795
    • /
    • 2017
  • Objective: The study examined the effect of intravenous administration of bacterial endotoxin-lipopolysaccharide (LPS) -on the nocturnal secretion of melatonin and on the expression of enzymes of the melatonin biosynthetic pathway in the pineal gland of ewes, taking into account two different photoperiodic conditions: short-night (SN; n = 12) and long-night (LN; n = 12). Methods: In both experiments, animals (n = 12) were randomly divided into two groups: control (n = 6) and LPS-treated (n = 6) one. Two hours after sunset, animals received an injection of LPS or saline. Blood samples were collected starting one hour after sunset and continuing for 3 hours after the treatment. The ewes were euthanized 3 hours after LPS/saline treatment. The concentration of hormones in plasma was assayed by radioimmunoassay. In the pineal gland, the content of serotonin and its metabolite was determined by HPLC; whereas the expression of examined genes and protein was assayed using real-time polymerase chain reaction and Western Blot, respectively. Results: Endotoxin administration lowered (p<0.05) levels of circulating melatonin in animals from LN photoperiod only during the first hour after treatment, while in ewes from SN photoperiod only in the third hour after the injection. Inflammation more substantially suppressed biosynthesis of melatonin in ewes from SN photoperiod, which were also characterised by lower (p<0.05) cortisol concentrations after LPS treatment compared with animals from LN photoperiod. In the pineal gland of ewes subjected to SN photoperiod, LPS reduced (p<0.05) serotonin content and the expression of melatonin biosynthetic pathway enzymes, such as tryptophan hydroxylase and arylalkylamine-N-acetyltransferase. Pineal activity may be disturbed by circulating LPS and proinflammatory cytokines because the expression of mRNAs encoding their corresponding receptors was determined in this gland. Conclusion: The present study showed that peripheral inflammation reduces the secretion of melatonin, but this effect may be influenced by the photoperiod.

The Effect of Melatonin on Mouse Jejunal Crypt Cell Survival and Apoptosis (멜라토닌이 생쥐 소낭 세포 재생과 아포토시스에 미치는 영향에 대한 연구)

  • Kang, Jin-Oh;Ha, Eun-Young;Baik, Hyung-Hwan;Cho, Yong-Ho;Hong, Seong-Eon
    • Radiation Oncology Journal
    • /
    • v.18 no.1
    • /
    • pp.60-67
    • /
    • 2000
  • Purpose :To evaluate protective mechanism of melatonin against radiation damage and its relationship with apoptosis in mouse jejunum. Materials and Methods: 168 mice were divided into 28 groups according to radiation dose and matatonin treatment. To analysis crypt survival, microcolony survival assay was done according to Withers and Elkind's method. To analysis apoptosis, TUNEL assay was done according to Labet-Moleur's method. Results : Radiation protection effect of melatonin was demonstrated by crypt survival assay and its effect was stronger in high radiation dose area. Apoptosis index with 8 Gy irradiation was 18.4$\%$ in control group and 16.5$\%$ in melatonin treated group. After 18 Gy, apoptosis index was 17.2$\%$ in control group and 15.4$\%$ in melatonin treated group. Apoptosis index did not show statistically significant difference between melatonin treated group and control group. Conclusion : Melatonin shows clear protective effect in mouse jejunum against radiation damage but its protective effect seems not to be related with apoptosis protection effect.

  • PDF

Effects of Controlled Photoperiod on Body Development in Growing Juvenile Rats

  • Lee, Seung-Hoon;Lee, Han-Ki;Shin, Jin-Hee;Hong, Yun-Kyung;Lee, Sang-Kil;Lee, Sang-Un;Suzuki, Takao;Kang, Tae-Young;Hong, Yong-Geun
    • Reproductive and Developmental Biology
    • /
    • v.34 no.2
    • /
    • pp.89-94
    • /
    • 2010
  • Melatonin is induced by light information through the retina and leads to growth factor activation. Thus, we investigated the effects of melatonin by controlling the photoperiod of growing young rats. Male Sprague-Dawley rats (n=6; 4 weeks old) were divided into two experimental groups: the L/D group (normal photoperiod; light/dark: 12/12 h; lights on at 9:00 a.m.) and the L/L group (light/light: 24 h). Rat body weight and food consumption were measured daily for 8 weeks. After 8 weeks, the rats were anesthetized with a mixture of ketamine (50 mg/kg) and xylazine (10 mg/kg) and sacrificed. Tissue was then collected for RNA isolation (from brain, heart, liver, kidney, adrenal gland, testis, tibia, hind limb muscles). Also, serum was isolated from blood using a centrifugal separation. The L/L group had significantly lower body weight than the L/D group from 4 to 6 weeks (p<0.05). The L/D group had increased tissue mass, compared with the L/L group, but the difference was not statistically significant. The L/D group had a significantly higher melatonin concentration than the L/L group between the hours of midnight and 2:00 a.m (p<0.01). These results indicate that photoperiod length may affect the secretion of melatonin from the pineal gland. Also, the reduction of nocturnal melatonin secretion may retard the development of growing young rats. In future studies, we plan to compare exogenous melatonin administration with endogenous melatonin concentration induced by photoperiod control. Moreover, we will confirm whether the effects seen in pathological animal models can be reversed by controlling the photoperiod.

Effect of Different Environmental Application on Blood Melatonin Density in Sleep Disordered Rats (환경적용이 수면장애 모델 쥐의 혈중 멜라토닌 농도에 미치는 영향)

  • Jang, Sang-Hun;Kim, Dong-Hyun
    • The Journal of Korean society of community based occupational therapy
    • /
    • v.7 no.1
    • /
    • pp.9-16
    • /
    • 2017
  • Objective : The study was to find out the effect of sleep disorder bt melatonin when we applied the evironmental change to rats wirh sleep disorder. Methods : We performed the study in lab which is located in Gyungbuk. We divided 26 rats into two groups. The experimental group had the environmental change for 3 days. The control group didn't have the change. We checked the level of melatonin of each group. Results : There was a significant difference of the level of melatonin in experimental group after applying the environmental change for 3 days (p=.000). The level of melatonin was increased a little for 3 each day in control group, but there was no significance(p=.212). There was a significant difference of the level of melatonin in both groups before and after applying the environmental change. However, the level of melatonin was increased significantly in experimental group, and the level was decreased significantly in control group. Conclusion : The patients with sleep disorder are increasing in modern society. We made a animal model with sleep disorder to find out the effect of the environmental change. We applied the environment like human's and could know the improvement effect of sleep disorder.

The Effect of Extracts of Berberis koreana Bark by Lactobacillus Fermentation on the Concentration of Serotonin and Melatonin in the Serum of Treated ICR Mice (유산균 발효된 매자나무 추출물이 마우스 혈청중의 Melatonin 및 Serotonin의 함량에 미치는 영향)

  • Ling, Jin;Kim, Ji-Seon;Seo, Yong-Chang;Choi, Woon-Yong;Ahn, Ju-Hee;Ma, Choong-Je;Yoon, Chang-Soon;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.2
    • /
    • pp.117-125
    • /
    • 2011
  • This study was to investigate the effect of fermentation extracts on the concentration of serotonin and melatonin in the serum of the ICR mice. The ICR mice were divided into water control group, lactobacillus fermentation solution including (Lactobacillus paracasei and Bifidobacterium longum B6) control group, positive control group (milk and doxylamine succinate), negative control group (caffein) and the groups treated with the extracts of Berberis koreana bark (WE: water extracts, FE-L.P: fermentation extracts of Lactobacillus paracasei, FE-B.L: fermentation extracts of Bifidobacterium longum B6). After ten-day feeding treatment, the mean concentration of serotonin for water control, WE, FE-L.P and FEB. L group was 134.72, 183.01, 232.09 and $223.78 ng/m{\ell}$, respectively. The mean concentration for FE-L.P and FE-B.L group were approximately 66% larger than that for water control group. The mean concentration of melatonin for water control, WE, FE-L.P and FE-B.L group was 76.92, 106.66, 157.56 and $141.81pg/m{\ell}$, respectively. The mean concentration of melatonin for FE-L.P and FE-B.L group were also larger than that for water control group. Our results indicated that the fermentation extracts of Berberis koreana bark have relatively greater potential to induce secretion of serotonin and melatonin. Therefore, the fermentation extracts have antidepressant effect.