The Change of Transforming Growth Factor ${\beta}1(TGF-{\beta}1)$ Expression by Melatonin in Irradiated Lung

방사선조사된 폐에서 Melatonin에 의한 TGF-${\beta}1$ 발현의 변화

  • Jang, Seong-Soon (Department of Radiation Oncology, College on Medicine, The Catholic University of Korea) ;
  • Choi, Ihl-Bohng (Department of Radiation Oncology, College on Medicine, The Catholic University of Korea)
  • 장성순 (가톨릭대학교 의과대학 방사선종양학교실) ;
  • 최일봉 (가톨릭대학교 의과대학 방사선종양학교실)
  • Published : 2005.09.01

Abstract

Purpose: The changed expressions of $TGF-{\beta}1$, as a key cytokine in the fibrotic process, due to melatonin with potent antioxidative effects, were investigated in the irradiated lung using fibrosis-sensitive C57BL/6 mice. Materials and Methods: Female C57BL/6 mice were divided into control irradiation-only, and melatonin (300 mg/kg i.p. 1 hr before irradiation) pretreatment groups. The thoraces of the mice were irradiated with a single dose of 12 Gy. The mRNA expressions of $TGF-{\beta}1$ in the lung tissue 2 and 4 weeks after irradiation were quantified using semiquantitive RT-PCR, and the cellular origin and expression levels of $TGF-{\beta}1$ protein were identified using immunohistochemical staining. Results: The relative mRNA expression levels in the irradiation-only and melatonin pretreatment groups 2 and 4 weeks after irradiation were 1.92- and 1.80-fold (p=0.064) and 2.38- and 1.94-fold (p=0.004) Increased, respectively compared to those in the control group. increased expressions of $TGF-{\beta}1$ protein were prominently detected in regions of histopathologicai radiation injury, with alveolar macrophages and septal epithelial cells serving as important sources of $TGF-{\beta}1$ expression. At 2 and 4 weeks after irradiation, the expression levels of protein were $15.8\%\;vs.\;16.9\%$ (p=0.565) and $36.1\%\;vs.\;25.7\%$ (p=0.009), respectively. Conclusion: The mRNA and protein expressions of $TGF-{\beta}1$ in the lung tissue following thoracic irradiation with 12 Gy were significantly decreased by melatonin pretreatment at 4 weeks. These results indicate that melatonin may have a possible application as an antifibrotic agent in radiation-induced lung injury.

목적: 강력한 항산화 효과를 지닌 melatonin을 전처치하였을 때 방사선유도성 섬유증 과정에서 중요한 사이토카인인 $TGF-{\beta}1$의 변화된 발현양상을 마우스 폐에서 연구하였다. 대상 및 방법: C57BL/6 마우스를 실험군에 따라 세 군(대조군, 방사선조사 단독군, melatonin 전처치군(방사선조사 1시간 전에 300 mg/kg 복강주사))으로 분류하고 양측 흉곽에 12 Gy의 선량을 단일조사하였다. 방사선조사 후 2주와 4주의 폐조직에서 $TGF-{\beta}1$ mRNA 발현수준을 측정하기 위해 semiquantitive RT-PCR를 시행하였고, $TGF-{\beta}1$ protein 발현의 수준과 위치를 보기 위해 면역조직화학염색을 시행하였다. 결과: 2주 후에 측정된 mRNA 발현은 방사선조사 단독군과 melatonin 전처치군에서 각각 대조군의 1.92배와 1.80배 증가된 수준을 보였고(p=0.064), 4주 후에는 각각 2.38배와 1.94배 수준의 증가된 발현을 보였다(p=0.004). $TGF-{\beta}1$ protein의 발현은 조직병리학적으로 방사선손상 영역에서 주로 관찰되었는데 폐포 대식세포와 폐포벽의 상피세포들이 주요 근원이었다. 발현수준은 2주완 4주 후에 각각 $15.8\%\;vs\;16.9\%$ (P=0.565), 그리고 $36.1\%\;vs\;25.7\%$ (p=0.009)이었다. 결론: Melatonin 전처치로 방사선조사에 의한 $TGF-{\beta}1$ mRNA와 protein의 발현이 4주 후에 유의하게 감소됨을 관찰하였다. 따라서 방사선으로 인한 폐손상 시에 항섬유증 약물로의 사용가능성을 확인하였다.

Keywords

References

  1. Poli G, Parola M. Oxidative damage and fibrogenesis. Free Radic Biol Med 1997;22:287-305 https://doi.org/10.1016/S0891-5849(96)00327-9
  2. Rubin P, Johnston CJ, Williams JP, McDonald S, Finkelstein JN. A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. Int J Radiat Oncol Biol Phys 1995;33:99-109 https://doi.org/10.1016/0360-3016(95)00095-G
  3. Rodemann HP, Bamberg M. Cellular basis of radiation-induced fibrosis. Radiother Oncol 1995;35:83-90 https://doi.org/10.1016/0167-8140(95)01540-W
  4. Martin M, Lefaix JL, Delanian S. TGF-$\beta$1 and radiation fibrosis: a master switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys 2000;47:277-290 https://doi.org/10.1016/S0360-3016(00)00435-1
  5. Mehta V. Radiation pneuminitis and pulmonary fibrosis in non-small-cell lung cancer: pulmonary function, prediction, and prevention. Int J Radiat Oncol Biol Phys 2005;article in press https://doi.org/10.1016/j.ijrobp.2005.03.047
  6. Karbownik M, Reiter RJ. Antioxidative effects of melatonin in protection against cellular damage caused by ionizing radiation. Proc Soc Exp Biol Med 2000;225:9-22 https://doi.org/10.1046/j.1525-1373.2000.22502.x
  7. Border WA, Noble NA. Transforming growth factor $\beta$ in tissue fibrosis. N Engl J Med 1994;331:1286-1292 https://doi.org/10.1056/NEJM199411103311907
  8. Hill RP, Rodemann HP, Hendry JH, Roberts SA, Anscher MS. Normal tissue radiobiology: from the laboratory to the clinic. Int J Radiat Oncol Biol Phys 2001;49:353-365 https://doi.org/10.1016/S0360-3016(00)01484-X
  9. Anscher MS, Kong FM, Andrews K, et al. Plasma transforming growth factor $\beta$1 as a predictor of radiation pneumonitis. Int J Radiat Oncol Biol Phys 1998;41:1029-1035 https://doi.org/10.1016/S0360-3016(98)00154-0
  10. Moustakas A, Pardali K, Gaal A, Heldin CH. Mechanisms of TGF-$\beta$ signaling in regulation of cell growth and differentiation. Immunol Lett 2002;82:85-91 https://doi.org/10.1016/S0165-2478(02)00023-8
  11. Yi ES, Bedoya A, Lee H, et al. Radiation-induced lung injury in vivo: expression of transforming growth factor-beta precedes fibrosis. Inflammation 1996;20:339-352 https://doi.org/10.1007/BF01486737
  12. Johnston CJ, Piedboeuf B, Baggs R, Rubin P, Finkelstein JN. Differences in correlation of mRNA gene expression in mice sensitive and resistant to radiation-induced pulmonary fibrosis. Radiat Res 1995;142:197-203 https://doi.org/10.2307/3579029
  13. Rube CE, Uthe D, Schmid KW, et al. Dose-dependent induction of transforming growth factor $\beta$ (TGF-$\beta$) in the lung tissue of fibrosis-prone mice after thoracic irradiation. Int J Radiat Oncol Biol Phys 2000;47:1033-1042 https://doi.org/10.1016/S0360-3016(00)00482-X
  14. Brzezinski A. Mechanisms of disease: melatonin in humans. N Engl J Med 1997;336:186-195 https://doi.org/10.1056/NEJM199701163360306
  15. Vijayalaxmi, Reiter RJ, Tan DX, Herman TS, Thomas CR. Melatonin as a radioprotective agent: a review. Int J Radiat Oncol Biol Phys 2004;59:639-653 https://doi.org/10.1016/j.ijrobp.2004.02.006
  16. Vijayalaxmi, Thomas CR, Reiter RJ, Herman TS. Melatonin: from basic research to cancer treatment clinics. J Clin Oncol 2002;20:2575-2601 https://doi.org/10.1200/JCO.2002.11.004
  17. Lissoni P, Meregalli S, Nosetto L, et al. Increased survival time in brain glioblastomas by a radioneuroendocrine strategy with radiotherapy plus melatonin compared to radiotherapy alone. Oncology 1996;53:43-46 https://doi.org/10.1159/000227533
  18. Tahan V, Ozaras R, Canbakan B, et al. Melatonin reduces dimethylnitrosamine-induced liver fibrosis in rats. J Pineal Res 2004;37:78-84 https://doi.org/10.1111/j.1600-079X.2004.00137.x
  19. Arslan SO, Zerin M, Vural H, Coskun A. The effect of melatonin on bleomycin-induced pulmonary fibrosis in rats. J Pineal Res 2002;32:21-25 https://doi.org/10.1034/j.1600-079x.2002.10796.x
  20. Drobnik J, Dabrowski R. Pinealectomy-induced elevation of collagen content in the intact skin is suppressed by melatonin application. Cytobios 1999;100:49-55€
  21. Drobnik J, Dabrowski R. Melatonin suppresses the pinealectomy- induced elevation of collagen content in a wound. Cytobios 1996;85:51-58