• Title/Summary/Keyword: Melanocortin 1 Receptor

Search Result 45, Processing Time 0.021 seconds

Identification of Hanwoo and Holstein meat using MGB probe based real-time PCR associated with single nucleotide polymorphism (SNP) in Melanocortin 1 receptor (MC1R) gene (소 모색관련 MC1R 유전자의 SNP와 관련한 MGB probe에 기초한 real-time PCR을 이용한 한우육과 Holstein육의 판별)

  • Park, Sung-Do;Kim, Tae-Jung;Lee, Jae-Il
    • Korean Journal of Veterinary Research
    • /
    • v.45 no.1
    • /
    • pp.25-28
    • /
    • 2005
  • The melanocortin 1 receptor (MC1R) plays an important role in regulation of melanin pigment synthesis within mammalian melanocytes. Mutations within the gene encoding MC1R have been shown to explain coat color variations within several mammalian species including cattle. To develope a rapid and accurate method for the identification of Hanwoo meat, we performed a single nucleotide polymorphism (SNP) analysis in Melanocortin 1 receptor (MC1R) gene using TaqMan$^{(R)}$ MGB probe-based real-time PCR. Two specific probes (one for Hanwoo and the other for Holstein and Black angus) were designed. At the 5' end of 2 TaqMan$^{(R)}$ MGB probes, 6-carboxyfluorescein (FAM) was labeled for Hanwoo, and VIC for Holstein and Black angus. As a result, Hanwoo samples showed FAM-positive signal only, whereas other samples showed VIC-positive. This result suggests that the TaqMan$^{(R)}$ MGB probe based real-time PCR technique would be very accurate, easy and reproducible method to discriminate between Hanwoo meat and Holstein/Black angus meat.

Sequence characterization and polymorphism of melanocortin 1 receptor gene in some goat breeds with different coat color of Mongolia

  • Ganbold, Onolragchaa;Manjula, Prabuddha;Lee, Seung-Hwan;Paek, Woon Kee;Seo, Dongwon;Munkhbayar, Munkhbaatar;Lee, Jun Heon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.939-948
    • /
    • 2019
  • Objective: Extension and Agouti loci play a key role for proportions of eumelanin and pheomelanin in determining coat color in several species, including goat. Mongolian goats exhibit diverse types of coat color phenotypes. In this study, investigation of the melanocortin 1 receptor (MC1R) coding region in different coat colors in Mongolian goats was performed to ascertain the presence of the extension allele. Methods: A total of 105 goat samples representing three goat breeds were collected for this study from middle Mongolia. A 938 base pair (bp) long coding region of the MC1R gene was sequenced for three different breeds with different coat colors (Gobi Gurwan Saikhan: complete black, Zalaa Jinstiin Tsagaan: complete white, Mongolian native goat: admixture of different of coat colors). The genotypes of these goats were obtained from analyzing and comparing the sequencing results. Results: A total of seven haplotypes defined by five substitution were identified. The five single nucleotide polymorphisms included two synonymous mutations (c.183C>T and c.489G>A) and three missense (non-synonymous) mutations (c.676A>G, c.748T>G, and c.770T>A). Comparison of genotypes frequencies of two common missense mutions using chi-sqaure ($x^2$) test revealed significant differences between coat color groups (p<0.001). A logistic regression analysis additionally suggested highly significant association between genotypes and variation of black versus white uniform combination. Alternatively, most investigated goats (60.4%) belonged to H2 (TGAGT) haplotype. Conclusion: According to the findings obtained in this study on the investigated coat colors, mutations in MC1R gene may have the crucial role for determining eumelanin and pheomelanin phenotypes. Due to the complication of coat color phenotype, more detailed investigation needed.

Analysis of Melanocortin Receptor 1 (MC1R) Genotype in Korean Brindle Cattle and Korean Cattle with Dark Muzzle (칡소와 비경흑색 한우의 Melanocortin Receptor 1 (MC1R) 유전자형 분석)

  • Lee, S.S.;Yang, B.S.;Yang, Y.H.;Gang, S.Y.;Ko, S.B.;Jeong, J.K.;Oh, W.Y.;Oh, S.J.;Kim, K.I.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.23-30
    • /
    • 2002
  • PCR-RFLP analysis was carried out to investigate the genotype of Melanocortin receptor 1 (MC1R) gene in Korean Brindle Cattle and Korean Cattle with dark muzzle, which are coat color and muzzle pigmentation variants of Korean Cattle, respectively. Allelic variants of MC1R in cattle were analyzed by digestion with BsrFⅠ, AciⅠ. Among six genotypes, $E^D/E^D,\;E^D/E^+,\;E^D/e,\;E^+/E^+,\;E^+$/e and e/e, detected in cattle, only two genotypes, $E^+/E^+\;and\;E^+$/e, were observed in Korean Brindle Cattle, probably reflecting the necessary of $E^+$ allele for the expression of black brindle coat color. As in Korean Cattle with light muzzle, the $E^+$/e and e/e genotypes were detected in Korean Cattle with dark muzzle. The $E^+$ and e alleles frequencies in two populations of Korean Cattle with dark muzzle and with light muzzle were 0.37, 0.63 and 0,11, 0.89, respectively. Although the frequency of $E^+$ allele in Korean Cattle with dark muzzle was higher than in Korean Cattle with light muzzle, the $E^+$ allele was not completely associated with dark muzzle pigmentation. The results of this experiment indicate that the difference of MC1R genotype and frequency may be useful for fixation of coat color in Korean Cattle as well as Korean Brindle Cattle.

Validation of Methods for Isolation and Culture of Alpaca Melanocytes: A Novel Tool for In vitro Studies of Mechanisms Controlling Coat Color

  • Bai, Rui;Sen, Aritro;Yu, Zhihui;Yang, Gang;Wang, Haidong;Fan, Ruiwen;Lv, Lihua;Lee, Kyung-Bon;Smith, George W;Dong, Changsheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.4
    • /
    • pp.430-436
    • /
    • 2010
  • The objective of the present studies was to develop and validate a system for isolation, purification and extended culture of pigment-producing cells in alpaca skin (melanocytes) responsible for coat color and to determine the effect of alpha melanocyte stimulating hormone treatment on mRNA expression for the melanocortin 1 receptor, a key gene involved in coat color regulation in other species. Skin punch biopsies were harvested from the dorsal region of 1-3 yr old alpacas and three different enzyme digestion methods were evaluated for effects on yield of viable cells and attachment in vitro. Greatest cell yields and attachment were obtained following dispersion with dispase II relative to trypsin and trypsin-EDTA treatment. Culture of cells in medium supplemented with basic fibroblast growth factor, bovine pituitary extract, hydrocortisone, insulin, 12-O-tetradecanolphorbol-13-acetate and cholera toxin yielded highly pure populations of melanocytes by passage 3 as confirmed by detection of tyrosinase activity and immunocytochemical localization of melanocyte markers including tyrosinase, S-100 and micropthalmia-associated transcription factor. Abundance of mRNA for tyrosinase, a key enzyme in melanocyte pigment production, was maintained through 10 passages showing preservation of melanocyte phenotypic characteristics with extended culture. To determine hormonal responsiveness of cultured melanocytes and investigate regulation of melanocortin 1 receptor expression, cultured melanocytes were treated with increasing concentrations of ${\alpha}$-melanocyte stimulating hormone. Treatment with ${\alpha}$-melanocyte stimulating hormone increased melanocortin receptor 1 mRNA in a dose dependent fashion. The results demonstrated culture of pure populations of alpaca melanocytes to 10 passages and illustrate the potential utility of such cells for studies of intrinsic and extrinsic regulation of genes controlling pigmentation and coat color in fiber-producing species.

Effects of Potential Melanocortin-1 Receptor Antagonists on Cultured Normal Human Melanocytes (Melanocortin-1 수용체 길항제의 배양된 인간 멜라노사이트에 대한 효과)

  • Lee, Sanghwa;Chang, Yun-Hee;Lee, Seol-Hoon;Lee, Jeung Hoon
    • YAKHAK HOEJI
    • /
    • v.58 no.1
    • /
    • pp.21-27
    • /
    • 2014
  • We have developed 8 peptide derivatives as potential MC1R antagonists and their inhibitory effects on ${\alpha}$-MSH induced cell growth in cultured normal human melanocytes (NHM) were investigated. From these experiments, the two most potent peptide derivatives, 5-phenylvaleric acid-(D)His-Arg-Trp-$(Lys)_6NH_2$ (P 6) and 5-phenylvaleric acid-(D)His-Arg-Trp-$(Lys)_9NH_2$ (P 7) were selected for further studies. In ${\alpha}$-MSH depleted NHM cells, we have found that the treatment with 1 ${\mu}M$ of these two peptide derivatives, P 6 and P 7, inhibited the cell proliferation induced by the addition of 1 nM ${\alpha}$- MSH by 70% and 72%, respectively. In NHM cells without previous ${\alpha}$-MSH depletion, 1 ${\mu}M$ treatment in the presence of 10 nM ${\alpha}$-MSH resulted in 70% (P 6) and 80% (P 7) decrease in cell growth and 64% (P 6) and 71% (P 7) reduction in melanin synthesis, respectively. The peptide derivatives P 6 and P 7 were proved to have no apparent cytotoxicity and inhibited the elevation of intracellular cAMP concentration triggered by ${\alpha}$-MSH. In conclusion, our data suggest that the peptide derivatives reported in this study, 5-phenylvaleric acid-(D)His-Arg-Trp-$(Lys)_6NH_2$ (P 6) and 5-phenylvaleric acid-(D)His- Arg-Trp-$(Lys)_9NH_2$ (P 7) strongly antagonize ${\alpha}$-MSH, inhibit cell proliferation and melanin synthesis, and lower the intracellular cAMP concentration, hence have a promising potential as a novel skin lightening agent.

Associations of the Porcine Melanocortin-4 Receptor (MC4R) Gene with Growth Traits in Duroc Pigs (듀록 품종의 Melanocortin-4 Receptor(MC4R) 유전자와 성장형질과의 연관성 분석)

  • Cho, K.H.;Kim, M.J.;Choi, B.H.;Jeon, G.J.;Ryu, J.W.;Jung, H.J.;Kim, I.C.;Lee, H.K.;Jeon, G.J.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.437-442
    • /
    • 2007
  • The melanocortin-4 receptor(MC4R) is virtually expressed in all brain regions and plays an important role in energy homeostasis in mammals. MC4R has been intensively studied as a trait gene controlling economically important traits, such as growth and feed conversion, etc. Six hundreds and sixty Duroc pigs were genotyped for the MC4R locus and analyzed their relationships with breeding values for average daily gain(ADG), backfat thickness(BF), days to 90kg(D90) and feed conversion(FC). The estimated genotype frequencies for the all Duroc pigs were: 30.8%, 45.2%, 24.1% for AA, AB and BB genotypes, respectively. The mutant A allele was significantly associated with ADG, D90 and BF whereas no significant relationship was found with FC. The change of gene frequencies by generation was shown in both selected and culled groups. These results indicate that the MC4R polymorphism could be integrated in the present selection program to realize a marker-assisted selection for the growth traits of the Duroc population.

Characterization and Tissues Distribution of Vinculin, Agouti-relating Protein and Melanocortin 4 Receptor Genes in Rainbow Trout, Oncorhynchus mykiss

  • Yoon, Jong-Man
    • Development and Reproduction
    • /
    • v.14 no.4
    • /
    • pp.261-268
    • /
    • 2010
  • As in the O. mykiss electrophoretic profiles of RNA, the signals of each RNA sample from 9 individual tissues such as liver, muscle, brain, heart, pituitary gland, kidney, intestine, spleen and gill similar to positive control were obtained. The tissue distributions of the complimentary DNA (cDNA) of O. mykiss four genes were analyzed using quantitative real-time PCR with primer sets for tissue expression analysis. In this rainbow trout species, author obtained bands of various sizes, ranged from 700 bp to 1,400 bp. A dissociation curve was made at the end of each run to make sure that there was no non-specific amplification. Supplementarily, the Ct of each DNA was compared. The Ct values of vinculin with rainbow trout tissues were determined in a manner similar to those for agouti-related protein (AgRP) and melanocortin receptors (MC4R I and MC4R II). Further, obtained Cts for standard curve of each DNA were affected by specific product (vinculin, AgRP and MC4R II genes). After several experiments with four individual genes of rainbow trout, author estimated a variation ratio of the mean Ct value of the DNA extracted using the comparative CTt method was 37.27, and the standard deviation was 5.33. The correlation coefficient between the Ct values and the concentration of cDNA was -0.98, -0.99, -0.91 and -0.86, respectively (vinculin, AgRP, MC4R I and MC4R II genes). Since this correlation showed high linearity, the straight line obtained was used as a standard for the O. mykiss tissues reared in aquarium. A PCR efficiency of 100% is ideally achieved when the slopes are close to the theoretical value of -3.31. According to quantification method, the results of quantification are strongly affected by the DNA fragmentation. The size of most DNA fragments obtained from various tissues of rainbow trout used in the experiment was approximately 100 bp. According to the four slopes, an efficiency of nearly 100% was estimated for four genes detection methods. Additionally, further analysis with more individuals and primers will be required to fully establish optimization in rainbow trout.

Effects of Genotype Mutation and Coat Color Phenotype on the Offspring from Mating System of MC1R Genotype Patterns in Korean Brindle Cattle (칡소의 MC1R의 유전자형에 따른 교배 조합이 자손의 모색과 유전자형 변이에 미치는 영향)

  • Kim, Sang-Hwan;Jung, Kyoung-Sub;Lee, Ho-Jun;Baek, Jun-Seok;Jung, Duk-Won;Kim, Dae-Eun;Yoon, Jong-Taek
    • Journal of Embryo Transfer
    • /
    • v.28 no.3
    • /
    • pp.215-222
    • /
    • 2013
  • Bovine coat color is decided by the melanocortin receptor 1 (MC1R) genotype mutation and melanogenesis. Specially, in the various cattle breeds, dominant black coat color is expressed by dominant genotype of $E^D$, red or brown is expressed in the frame shift mutation of recessive homozygous e by base pair deletion and wild type of $E^+$ is expressed in various coat colors. However, not very well known about the effected of MC1R genotype mutation on the coat color through family lines in KBC. Therefore, this study were to investigate effect of MC1R genotype mutation on the coat color, and to suggest mating breed system in accordance with of MC1R genotype for increased on brindle coat color appearance. Parents (sire 2 heads and dam 3 heads) and offspring (total : 54 heads) from crossbreeding in KBC family line with the MC1R genotype and phenotype records were selected as experimental animals. The relationship between melanocortin 1 receptor (MC1R) genotypes expression verified by PCR-RFLP, and brindle coat color appearance to the family line of the cross mating breed from MC1R genotype pattern was determined. As a result, 4MC1R genetic variations, $E^+/E^+$ (sire 1), $E^+/e$ (sire 2 and dam 3), $E^+/e$ with 4 bands of 174, 207 and 328 bp (dam 1) and $E^+/e$ with 3 bands of 174, 207, 328 and 535 bp (dam 2) from parents (sire and dam) of KBC. However, 3 genetic variations, e/e (24%), $E^+/E^+$ (22%) and $E^+/e$ (56%) were identified in offspring. Also, brindle coat color expressrated was the e/e with the 0%, $E^+/E^+$ with 67% and $E^+/e$ with 77% from MC1R genotype in offspring on the cross mating of KBC. Furthermore, when the sire had $E^+/e$ genotype and the dam had $E^+/E^+$ with the 3 bands or $E^+/e$ genotype, and both had whole body-brindle coat color, 62% of the offspring had whole body-brindle coat color. Therefore, the seresults, the mating system from MC1R genotype patterns of the sires ($E^+/e$) and dams ($E^+/E^+$ with the 3 bands or $E^+/e$) with brindle coat color may have the highest whole body-brindle coat color expression in their offspring.

PCR Technique for Determining Jeju Black Cattle, Hanwoo and Imported Beef (흑한우와 한우 및 수입우를 판별하기 위한 multiplex PCR 기술)

  • Kim, Chan-Su;Ko, Jung-Moon;Cha, Hyeon-Cheol;Park, Joong Kook;Jeong, Joon
    • Journal of Life Science
    • /
    • v.24 no.8
    • /
    • pp.910-914
    • /
    • 2014
  • For the identification of the Jeju black cattle, Hanwoo and imported beef, we performed a multiplex polymerase chain reaction (PCR) associated with microsatellite (MS) and melanocortin 1 receptor (MC1R) gene. The MC1R gene plays an important role in regulation of the melanin synthesis within mammalian melanocytes. MC1R encoded by extension (E) locus was almost fixed with recessive red e allele in the Hanwoo. We estimated that the specific genotypes ($E^+/E^+$, $E^+/e$) of MC1R gene were characteristic genotypes of Jeju black cattle. But the PCR products resulted from using the MC1R gene derived primers only are not sufficient to identify Jeju black cattle from other relatives. We performed two times of successive multiplex PCR to provide a more accurate result for the identification of Jeju black cattle. The results suggest that two types of successive multiplex PCR methods using MC1R gene and Microsatellite derived primer set will be more useful to identification of Jeju black cattle, Hanwoo and imported beef.

Coat colour phenotype of Qingyu pig is associated with polymorphisms of melanocortin receptor 1 gene

  • Wu, Xiaoqian;Tan, Zhendong;Shen, Linyuan;Yang, Qiong;Cheng, Xiao;Liao, Kun;Bai, Lin;Shuai, Surong;Li, Mingzhou;Li, Xuewei;Zhang, Shunhua;Zhu, Li
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.938-943
    • /
    • 2017
  • Objective: Qingyu pig, a Chinese indigenous pig breed, exhibits two types of coat colour phenotypes, including pure black and white with black spotting respectively. Melanocortin receptor 1 (MC1R) and agouti signaling protein (ASIP) are two widely reported pivotal genes that significantly affect the regulation of coat colour. The objectives of this study were to investigate whether the polymorphisms of these two genes are associated with coat colour and analyze the molecular mechanism of the coat colour separation in Qingyu pig. Methods: We studied the phenotype segregation and used polymerase chain reaction amplification and Sanger sequencing to investigate the polymorphism of MC1R and ASIP in 121 Qingyu pigs, consisting of 115 black and 6 white with black spotted pigs. Results: Coat colour of Qingyu pig is associated with the polymorphisms of MC1R but not ASIP. We only found 2 haplotypes, $E^{QY}$ and $E^{qy}$, based on the 13 observed mutations from MC1R gene. Among which, $E^{qy}$ presented a recessive inheritance mode in black spotted Qingyu pigs. Further analysis revealed a g.462-463CC insertion that caused a frameshift mutation and a premature stop codon, thus changed the first transmembrane domain completely and lost the remaining six transmembrane domains. Altogether, our results strongly support that the variety of Qingyu pig's coat colour is related to MC1R. Conclusion: Our findings indicated that black coat colour in Qingyu pig was dominant to white with black spotted phenotype and MC1R gene polymorphism was associated with coat colour separation in Qingyu pig.